

INTRODUCTION

Telemetry Sports integrates and provides data for NFL and College football teams to help their clients have more scouting efficiency, as well as aiding in better decision making.

Our goal: Create a 4th-down situational book to provide to clients, giving coaches a tool to help aid in 4th-down decision making. In order to recommend the optimal choice, we must first model the expected results for each of the three 4th-down options:

Model 1 (Field Goal):

- Type: Classification
- Description: Predict whether a field goal was made or missed

Model 2 (Punt):

- Type: Regression
- Description: Predict the net distance on the punt

Model 3 (Go-For-It):

- Type: Regression
- Description: Predict the yards gained on the attempt. This will directly determine if the conversion was successful or not.

Up 14, 4th & 3, 40 yards from opponent end zone Otr 1, 02:59 Timeouts: Off 3, Def 3					
			Win % if		
	Win %	Success %1	Fail	Succeed	
Go for it	91	56	88	93	
Punt	90	NA	NA	NA	
Field goal attempt	89	51	87	91	

¹ Likelihood of converting on 4th down or of making field goal Source: @ben_bot_baldwin

- with 84% accuracy

Figure 5: Punt Occurrences; Punt, Net, and Return Distance

Telemetry Sports: Win Probability

Chloe Click, Michael Cruz, Denton Paul, Adam Quinn, Daniel Castro

RESEARCH WORKFLOW

Data Collection:

- Our source of data was the College Fo Data API accessed using Python.
- We used the SQLite database engine to play-by-play, team, and player information

Data Cleaning + Analysis:

- Dropping null and inconsistent data
- Scraping player names and important from play description text
- Analyzing distribution and trends of occurrences (seen in Fig. 5).

Modeling:

- (1) Baseline Modeling
- (2) Feature Engineering (i.e., Player S
- (3) Feature Selection
- (4) Hyperparameter Tuning
- (5) Build more Complex Model
- (6) Evaluate

Field Goal

Final Model: XGBoost

Optimized on ROC_AUC scoring function Optimal Features: Distance, Kicker's Success Rate, Kicker's Longest Made, Quarter, and Score Difference Optimal hyperparameters: default parameters with max tree depth of 5 Evaluation: Model consistently runs

Punt

- Final Model: KNN Regressor
- Optimized on distance to neigh
- Optimal Features: Yards-to-Go Punter's Yards-per-Punt
- Optimal hyperparameters: K =
- Evaluation: MAE of 7.3 and I

SPORTS

CONCLUSION + EVENDE COALS

otball o store our ation values	Our the p expe win Figu learn spor crea	team has developed three accurate models for prediction of each 4th-down option. These ected outcomes can be paired with a third-party percentage model to produce the results in ure 4. We are very proud of our work and have hed how to apply the data science workflow to a ts setting. We hope to improve these models and te our own win percentage model in the future.
		ACKNOWI EDGEMENTS
tats)	We Corr Fuel guid than Hea reso com	would like to thank our Telemetry Sports porate Partner Mentors Nate Jahn and Tyler lling for providing us with this opportunity and ling us along the way. We would also like to k Dr. Mark Daniel Ward, Maggie Ann Betz, ther Goodwin, and David Glass for providing th urces and support needed for a successful pletion of our project.
		Go-For-It
		• Final Model: XGBoost
ıbor		 Go-For-It Final Model: XGBoost Optimized on negative mean absolute
ibor al and		 Go-For-It Final Model: XGBoost Optimized on negative mean absolute error scoring metric
nbor al, and		 Go-For-It Final Model: XGBoost Optimized on negative mean absolute error scoring metric Optimal Features: Yards-to-Goal,
ibor al, and		 Go-For-It Final Model: XGBoost Optimized on negative mean absolute error scoring metric Optimal Features: Yards-to-Goal, Distance, and Play Type
nbor al, and 150		 Go-For-It Final Model: XGBoost Optimized on negative mean absolute error scoring metric Optimal Features: Yards-to-Goal, Distance, and Play Type Optimal hyperparameters: default
nbor oal, and 150 RMSE of 10.	3	 Go-For-It Final Model: XGBoost Optimized on negative mean absolute error scoring metric Optimal Features: Yards-to-Goal, Distance, and Play Type Optimal hyperparameters: default parameters with max tree depth of 10 Evaluation: Model consistently rung with
nbor oal, and 150 RMSE of 10.	3	 Go-For-It Final Model: XGBoost Optimized on negative mean absolute error scoring metric Optimal Features: Yards-to-Goal, Distance, and Play Type Optimal hyperparameters: default parameters with max tree depth of 10 Evaluation: Model consistently runs with MAE of 5.5 and RMSE of 8.2
nbor oal, and 150 RMSE of 10.	3	 Go-For-It Final Model: XGBoost Optimized on negative mean absolute error scoring metric Optimal Features: Yards-to-Goal, Distance, and Play Type Optimal hyperparameters: default parameters with max tree depth of 10 Evaluation: Model consistently runs with MAE of 5.5 and RMSE of 8.2
nbor al, and 150 MSE of 10.	3	 Go-For-It Final Model: XGBoost Optimized on negative mean absolute error scoring metric Optimal Features: Yards-to-Goal, Distance, and Play Type Optimal hyperparameters: default parameters with max tree depth of 10 Evaluation: Model consistently runs with MAE of 5.5 and RMSE of 8.2

• The Data Mine Corporate Partners Symposium 2022 •