
Sick days

Other

Planned

Vacation

Total Number of Unplanned Daily Absences by Month Over 5 Years

broken down by Absence Type

Work Dept = XXX

dept_size < 36

Work Dept = XXX

Work Dept = XXX

Absenteeism in the Workplace
Bradley Chang, Elijah Colwill, Haleigh Gronwold, Yeling Jiang, Akshaya Kumar, Alex Liu, Shashi Pingolia, Rachel Zhang, Coby Zorn 

Introduction

• Expanded Data – Data from other factories without 

seasonal bias, differing production types, etc. for 

further correlation analysis.

• Individual Data – Access to individual 

level engagement data for more granular insights.

• Fiscal Impact – Quantifiable measurement of fiscal 

impact of absenteeism to target monetary impact 
instead of rate.

• Cross-validation of models – Train the models 

with more datasets using cross-validation to avoid 

overfitting and improve model performances.

Objective

Absenteeism is a large and growing issue in the 

manufacturing industry. Based on market 

research:

• The average manufacturing absence rate was 

3% in 2020. 1

• Over 2% of total work time was lost due to 

absenteeism. 1

• A shift worker in the U.S. costs a company         

≈ $3,600 in annual absenteeism costs. 2

• Direct costs include payroll and overtime; 

indirect costs include increased workload and 

reduced quality of work. 2

Our team has estimated, based on average 

industry absence rates and costs per shift worker, 

that the annual cost of absenteeism for large 

manufacturing companies is between 4 and 

5 million dollars.

Research Methodologies

Next Steps
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We began by pre-processing the data (i.e. data cleaning, data type conversion, 

and eliminating missing values) and by feature engineering our three datasets.

Data Overview

Quality Score Dataset

└ Start Date of Week, Work 
Department, Quality Score

+ Validation Set

└ data not in Absenteeism 
dataset (i.e., FY21)

Engagement Dataset

└ Survey Items, Participation Rates, 
Engagement Score, Perception of 
Survey Responses, etc.

Absenteeism Dataset

└ Work Department, Shift, Assigned Employee ID, 
Absence Type, Absence Description, etc.

+ Day of Week

+ Fiscal Year

+ Department Size

└ by aggregating unique employee IDs per 
department per fiscal year

+ Federal Holiday Flag

+ Unplanned Leave

└ by removing federal holidays and inventory 
adjustment days

Conclusions
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• Our forecasting models can predict weekly 

unplanned absences with high accuracy. The 

decision tree and time series models have the 

highest accuracy followed by the multi-linear 

regression model.

ANOVA Results

• More absences occur on Mondays & Fridays.

• Occupational injury is higher in October 

and November. Sick day absences are significant 

in Winter.

Regression Results

• No significant relationship exists between the 

number of absences and production quality.

• The absenteeism rate is negatively related to the 
engagement score.
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Modeling

Through exploratory analysis, we found that the reason 

for absence each month differs significantly. 

Deliverables

Feature-

Engineered 

Datasets

Data-Driven 

Insights

Forecasting 

Models

We used these three files to generate a master dataset

Time Series for Trend & Seasonality

By using the Auto Regressive Integrated Moving Average 

(ARIMA) model, we decomposed the unplanned leave rate series 

into trend, seasonality, and residuals. We found that:

• Absence rate fluctuates with quarterly seasonality.

• Around half of the departments have strong timely patterns 

and are perfect for an ARIMA model.

• September tends to have higher unplanned leave rates. This 

might be because of hunting season and planned factory 

shutdowns, according to HR and Operations Managers.

Model Results & Evaluation

Weekly 

Unplanned 

Leave 

We used multiple linear regressions (MLR) with double-log, quadratic, and interaction 

variations and a decision tree to forecast weekly unplanned leave and product quality.

Model Adjusted 𝑅2 MAE MAPE

Times series ARIMA* - 2.65 0.50

MLR 0.675 7.89 0.80

Log-log MLR 0.686 8.83 0.82

MLR with Quality2 0.62 8.74 0.88

MLR with Interactions 0.674 7.93 0.81

Decision Tree - 7.66 0.78

We evaluated model performances by adjusted 𝑅2, 
mean absolute error (MAE), and mean absolute 

percentage error (MAPE).
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* ARIMA model tests on department-level data, while the rest test on factory-level data.  
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