
● Models were generated for the protein safety 
targets AURKA, AURKB, HRH1, CHRM2, 
CHRM3 using neural network and random 
forest methodologies

● Heat maps  of predicted vs actual values on 
validation and test splits demonstrated an 
upward trend indicative of model learning

● The best models created both using neural 
network and random forest showed test R2

values ranging from 0.5 to 0.6 with training R2

values topping off near 0.8
○ (Right) An example of data visualization 

conducted using the models provided.
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● ATOM: Accelerating Therapeutics for 
Opportunities in Medicine

● Open public-private partnership for 
accelerating drug design using 
computation-driven drug design

● Goals:
○ Accelerate drug discovery 

process
○ Improve success rate in 

translation to patients
○ Transforming drug discovery 

from slow, high-failure process 
into rapid, patient-centric model

Fall 2020:

● Safety target background research and 
data extraction from: 

○ Protein Database (PDB)
○ ExcapeDB 
○ Drug Target Commons (DTC)
● Created and utilized datasets to 

generate graphs and compound counts
● Used data visualization to compare 

compound structure and determine 
structural diversity

FUTURE GOALS

ExampleofdatavisualizationfromAURKA
Left: Example ROC_AUC scores from validation dataset
compared to the test dataset for best and worst models.
Right: Histogram of the ROC_AUC test scores for all 3
datasets.

RESEARCH METHODOLOGY

Spring 2021:

● Construct machine learning models 
for various safety targets

● Generate  predictive models to 
characterize interactions between 
various compounds with 
prospective targets

● Train  models  to be able to predict 
molecules which could be potential 
drug target candidate

● Use the previous model training to 
create proper visualization and 
analysis tools

● Use created models to have a 
proper prediction pipeline that can 
run multiple molecules at one time 
and score them

● Run models through a virtual library 
to evaluate the created models 
against specified criteria

● Impact: With all of these tools, drug 
design and discovery will be 
significantly faster and cheaper

CONCLUSIONS
Data Visualization example from Fall 2020. 
Heat map of Tanimoto distances 
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Aurora Kinase A and B
●These are molecules that attach phosphate 

groups to serine and threonine amino acids.
○Play a regulatory role in cell division

●AURKA and B have a very structurally similar 
binding site.
●Our goal was to find a molecule that 

predominantly selects AURK A over AURKB, and 
AURK B over AURKA. 

Antihistamines and muscarinic receptors (HRH1, 
CHRM2, CHRM3) 
●Antihistamine drugs often causes undesirable 

side effects. 
●Our goal was to design a drug molecule that is 

receptive for one histamine receptor and ignore 
the others that cause undesirable side effects.

split_dataset_example.ipynb
● Utilizing datasets pertaining to the molecule of interest, this 

notebook was used to split the datasets 2 different ways.
○ Scaffold split: splits the dataset based on 2D 

structural framework of molecules
○ Random split: randomly splits the dataset 

● Within the splits, we are creating 3 different datasets: 
training, validation, and testing.

● The data visualization output from this notebook is two 2D 
UMAPs which compares the training and the testing 
datasets from the scaffold split and the random split.

○ Allows us to visualize the similarities
build_rf_nn_example1.ipynb 

● Using one split dataset (random or scaffold) to create and 
train models 

○ Random forest 
○ Graph convolutional neural networks 

Taking a Deeper Dive Into the Performance Table
The build_rf_nn_example1.ipynb and build_rf_nn_example1_class.ipynb 
both produce performance tables which contain results from the produced 
models.
The results that we focused on were: 

● Model_type: identifies which model the results are from, either 
random forest or neural network

● Model_uuid: specifies the unique identifier for the specific 
model

● rf_max_estimators:  the maximum numbers of trees in the 
forest 

● rf_max_depth:  maximum levels in each decision tree
● rf_max_features:  Identifies the maximum number of features 

Random Forest models are allowed to try in each individual 
tree. Generally, increasing the features improves the 
performance of the model at each node.

● valid_roc_auc_score:  classification score for models using the 
validation dataset. Measure of model performance at 
distinguishing between classes. 

● valid_r2_score: regression score for models using the validation 
dataset; a statistical measure of how close the data is to the 
fitted regression line. 

RESEARCH METHODS

● Specifying hyperparameters for the models
○ rf_max_estimators
○ rf_max_depth
○ rf_max_features
○ Layer_sizes
○ Dropouts

● Received performance tables and graphs comparing R2

scores, and predictions for the best and worst models 
separated by train/valid/test

build_rf_nn_example1_class.ipynb 
● Using both datasets to generate random forest and 

neural network models
● Specifying hyperparameters for our models
● Displays a performance table and graphs comparing 

best and worst models, ROC_AUC scores, a confusion 
matrix, and a display of the amount of  active and 
inactive molecules. 

split_dataset_example_with_binary_classes
● Reads in original dataset (before the splits) and plots 

active and inactive molecules based on their 
standard_value, or pIC50 values. 

DATA VISUALIZATION AND RESULTS -

Assessment of model performance for AURKB. 
AURKB has slightly different graphs which allows 
us to compare between the R2 scores of the 
datasets used.

Data Visualization 
● Confusion matrix 

○ A table that is used to describe the 
performance of a classification model. 
Identifies the predicted active and inactive 
models and the actual active and inactive 
models

● Area Under the Curve (AUC) and Receiver Operating 
Characteristics Curve (ROC)

○ Performance measurement for classification 
models that numerates how capable models 
are at distinguishing between classes. The 
higher the number, the better it performs.

○ Can be used to generate confusion matrices.
● Active and Inactive molecules 

○ Various plots and graphs that identify the 
number of active and inactive molecules. 

Data visualization example. 
Confusion matrix

Data visualization exam ple. Distribution of R2 scores 
betw een the 3 datasets (train/validation/test) for the best 
(top) and w orst (bottom ) m odels. Target used: AURKA
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