The Data Mine

Purpose Statement

PURDUE UNIVERSITY®

Finish Line, a subsidiary of JD Sports, is a fashion retailer that specializes in providing athleisure and footwear across the world. This project aims to build a model that predicts expected delivery time of customer orders in various scenarios to assist JD Finish Line in optimizing their order routing within the U.S.

Objectives

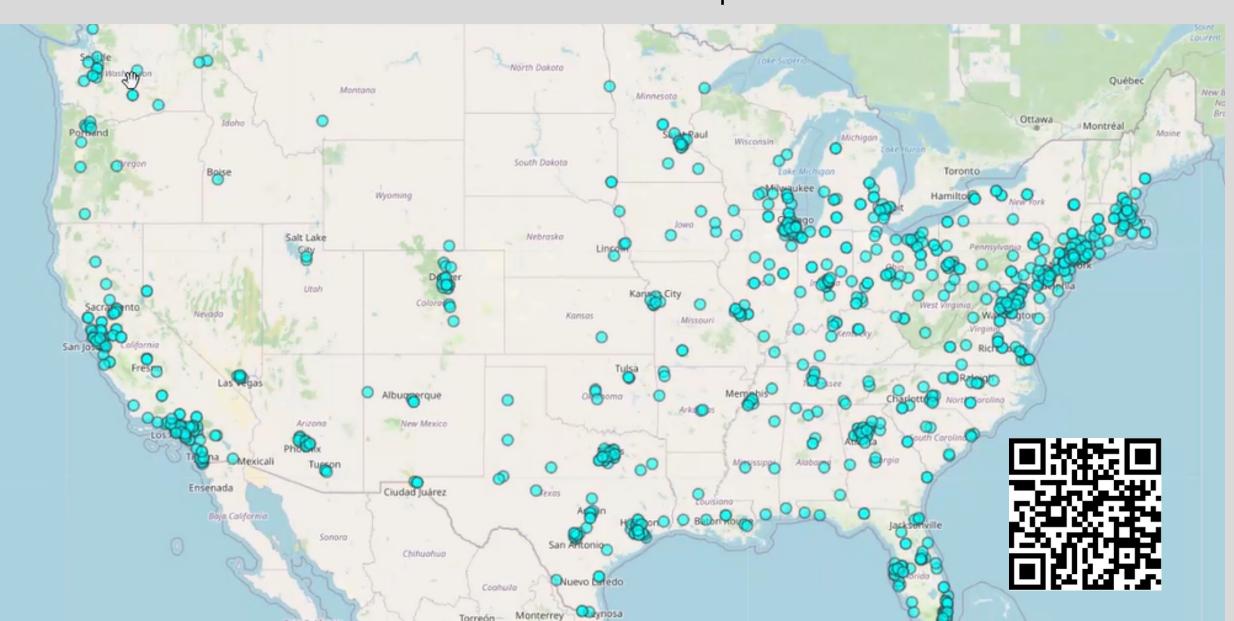
- Compute the most advantageous locations within the business to fulfill an order
- Be cost efficient to both the business and the customer
- Be Dynamic: provide order routing options in the case of natural disasters
- Leverage Learnings to develop a demand model for specific products and their expected ROI in various scenarios

Key Business Questions

- What is the best way to fulfill an order?
- How do we decide which store to route from without breaking size runs?
- What products tend to sell the best at specific locations?

Tools

- RStudio & Power BI data visualization
- PySpark (Python API) parallel processing framework for big data queries, machine learning. Over 1 TB of data!


Exploratory Data Analysis

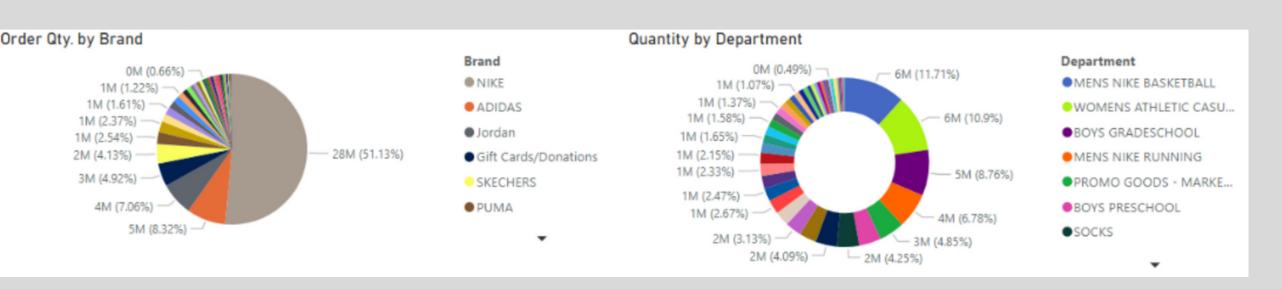

What products tend to sell the best at specific locations?

Table 1

OCCURRENCES	NAME	SIZE
2618	Men's Nike Sportswear Tech Fleece Taped Full-Zip Hoodie	MED
2298	Unisex Crocs Classic Clog Shoes (Men's Sizing)	7.0
2194	Unisex Crocs Classic Clog Shoes (Men's Sizing)	6.0
2190	Men's Nike Sportswear Tech Fleece Taped Full-Zip Hoodie	MED
2014	adidas Yeezy Slide Sandals	10.0

Table 1: Extracted information about a sample store's top selling items as well as their respective sizes and sales (occurrences).

Post EDA Goal: Implement an algorithm to select the optimal store(s) to ship a given order from

Model Implementation How do we decide which store to route an order from?

Dynamic Order Routing

Connor Underwood, Ethan Empaces, Sania Kapoor, Stephen Kruse, Bhavya Venkataraghavan

Interactive RStudio map of every U.S. JD Finish Line location that displays the findings from Table 1 but for each unique store.

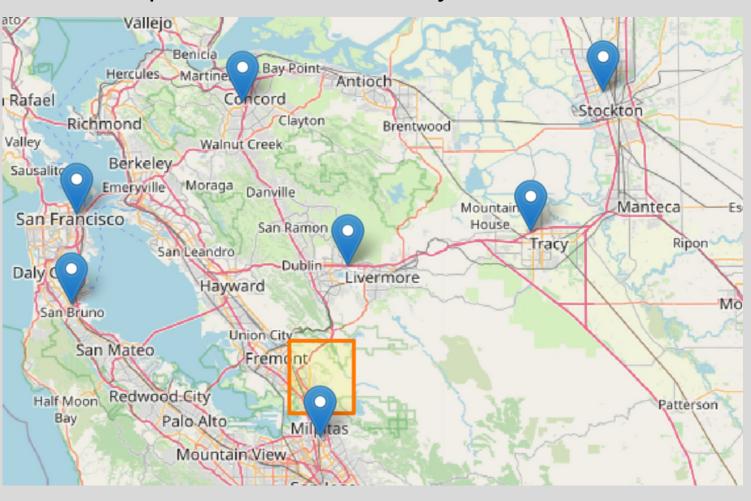
Pie charts of order quantity by brand and department, respectively, that help us conceptualize which brands and product departments sell the best.

Preprocessing Phase

- Dirty Data! Was Not Initially Machine Learning Compatible
- One Hot Encoding: technique to represent categorical features in a numeric format, for machine learning capabilities • *Encoded shipping carriers & U.S. states within the data
- Feature Integration: added other important features not already present within the data - lead time, days late (of order), order distance (in miles)

Model Brainstorming

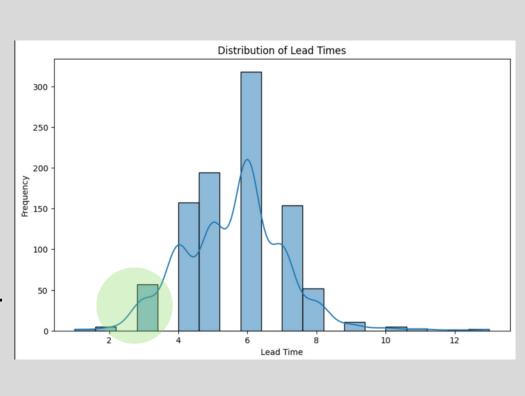
- Performed a K-means clustering algorithm on our model data
- Trimmed Mean Approach: Prioritize based on lowest average lead time


The Data Mine Corporate Partners Symposium 2024

Coordinates in 3D-space that indicates the center of each cluster

Cluster (0 centroid:	[0.9329375	0.62333237	1.66468112]
Cluster :	1 centroid:	[1.3184352	2.77474681	3.29118706]
Cluster 2	2 centroid:	[2.68763497	0.61660386	1.89345745]

Interactive map output of the Top 10 stores for Zip Code 94539 sorted by lead time


Future Goals

Current Capabilities

- Given any U.S. zip code, the model can output optimal stores based on user-defined metrics (lead time, distance, etc.)
- List the lead time history of any store-zip code pair

Future Capabilities

- Apply weights on certain metrics for increased accuracy
- Incorporate extra metrics such as product information

Conclusion

- Utilizing the provided data set, extracted insights regarding top selling items, their corresponding sizes, and sales frequencies for each U.S. store.
- Identified optimal fulfillment locations based on implemented machine learning techniques such as K- means clustering, including factors such as proximity to customers and available inventory

Acknowledgements

Thank you to Paice Fuller, Briana Pedersen, Matthew Market, 2024 JD Finish Line Team, & Data Mine Staff