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Breastfeeding improves maternal and child health. The American Academy of Pediatrics
recommends exclusive breastfeeding for 6 months, with continued breastfeeding for at
least 1 year. However, in the US, only 18.8% of infants are exclusively breastfed until
6 months of age. For mothers who initiate breastfeeding, the early post-partum period
sets the stage for sustained breastfeeding. Mothers who experience breastfeeding prob-
lems in the early post-partum period are more likely to discontinue breastfeeding within
2 weeks. A major risk factor for shorter breastfeeding duration is delayed lactogenesis II
(DLII; i.e., onset of milk “coming in” more than 72 h post-partum). Recent studies report
a metabolic–hormonal link to DLII. This is not surprising because around the time of birth
the mother’s entire metabolism changes to direct nutrients to mammary glands. Circadian
and metabolic systems are closely linked, and our rodent studies suggest circadian clocks
coordinate hormonal and metabolic changes to support lactation. Molecular and environ-
mental disruption of the circadian system decreases a dam’s ability to initiate lactation
and negatively impacts milk production. Circadian and metabolic systems evolved to be
functional and adaptive when lifestyles and environmental exposures were quite differ-
ent from modern times. We now have artificial lights, longer work days, and increases in
shift work. Disruption in the circadian system due to shift work, jet-lag, sleep disorders,
and other modern life style choices are associated with metabolic disorders, obesity, and
impaired reproduction. We hypothesize that DLII is related to disruption of the mother’s
circadian system. Here, we review literature that supports this hypothesis, and describe
interventions that may help to increase breastfeeding success.

Keywords: breastfeeding, chronodisruption, circadian clocks, delayed onset of lactogenesis II, lactation, metabo-
lism, pregnancy, sleep

INTRODUCTION
The World Health Organization recommends breast milk as the
ideal food source for growth and development of infants (1).
Human milk functions not only as food for the infant, but also
protects against infection, promotes intestinal, immune, and cog-
nitive development (2), and stimulates establishment of the unique
gut microbiome (3, 4) of the breastfed infant. Breastfeeding also
has beneficial effects on short- and long-term maternal and infant
health outcomes. Teens and adults who were breastfed as babies are
less likely to be overweight or obese and less likely to develop type-2
diabetes as well as perform better on intelligence tests (4). Mothers
who breastfeed return to their pre-pregnancy weight faster, have
lower rates of obesity, and lower risks of developing breast and
ovarian cancers (1).

Due to the tremendous health benefits of breastfeeding, the
American Academy of Pediatrics recommends exclusive breast-
feeding (i.e., no supplementation with formula or solid food)
for about 6 months, with continuation of breastfeeding for 1 year

or longer as mutually desired by mother and infant (5). Eco-
nomic analysis of breastfeeding benefits revealed that $13 billion
in healthcare costs would be saved and 911 infant deaths prevented
each year if 90% of families in the US complied with medical
recommendations to breastfeed exclusively for 6 months (6). How-
ever, rates of adequate breastfeeding are far below national targets.
The 2011 National Immunization Survey reported rates of breast-
feeding initiation were at 79.2%, with breastfeeding rates dropping
precipitously after that. Exclusive breastfeeding fell by 20%, to
59% at 1 week post-partum, 40.7% at 3 months, and only 18.8%
of mothers exclusively breastfed for 6 months (7).

The most common reason mothers cite for stopping breast-
feeding before their infant reached 2 weeks old, was that the baby
was unsettled, a behavior often interpreted by mothers as indicat-
ing an insufficient milk supply (8). Delayed lactogenesis II (DLII),
the onset of milk “coming in” more than 72 h post-partum, is a
major contributor to early formula supplementation, inadequate
breastfeeding, and breastfeeding cessation (9, 10). Further, infants
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of mothers who experience DLII are seven times more likely to
lose excessive weight the first 5 days after birth (11).

LACTOGENESIS IN WOMEN
Lactogenesis occurs in several stages. Lactogenesis I occurs during
pregnancy and is the initiation of the synthetic capacity of the
mammary glands. Lactogenesis II commences after delivery and is
the initiation of plentiful milk secretion. Changes in milk composi-
tion from colostrum to mature milk in combination with a sudden
feeling of breast fullness mark the onset of lactogenesis II, which
normally occurs between 30 and 40 h following the birth of a full-
term infant (10). Lactogenesis II is initiated post-partum by a fall in
progesterone while prolactin levels remain high. The process does
not depend on suckling of the infant until about the third or fourth
day post-partum. Comparison between breastfeeding and non-
breastfeeding women showed prolactin levels and milk secretion
volumes are the same between groups of women the first 2 days
post-partum (12, 13). Beginning day 3, post-partum prolactin lev-
els begin to become significantly less in non-lactating women (12),
and by day 4, secretion volume is lower in non-lactating women
with lack of milk-removal initiating mammary involution and
compositional differences in breast secretions between the groups
(13). Thus, although breastfeeding is not necessary for initiation
of lactogenesis II, it is essential for the continuation of lactation.
The final stage of lactogenesis, lactogenesis III, also called galac-
topoiesis, is the production and maintenance of mature milk from
day 9 post-partum, until weaning.

RISK FACTORS FOR DELAYED ONSET OF LACTOGENESIS II
Risk factors associated with DLII include primiparity, Cesarean
delivery, longer duration of labor, and elevated blood cortisol con-
centrations (Table 1). The risk for low milk volume on day 4
post-partum was 4.3-fold (95% confidence interval-CI: 1.5–12.4)

Table 1 | Risk factors for delayed or failed lactogenesis II [Modified

from Ref. (10)].

Delayed lactogenesis II

Primiparity

Psychosocial stress/pain

Maternal obesity

Diabetes

Hypertension

Stressful labor and delivery

Cesarean section

Delayed first breastfeed episode

Low perinatal breastfeeding frequency

Elevated cortisol

Failed lactogenesis II and/or low milk supply

Breast surgery/injury

Retained placental fragments

Cigarette smoking

Hypothyroidism, hypopituitarism

Ovarian theca-lutein cyst

Insufficient mammary glandular tissue

Polycystic ovarian syndrome

higher for mothers of pre-term infants delivered by Cesarean
section versus vaginally (14). In this study, Cesarean delivery was
associated with pregnancy-induced hypertension, delayed milk
expression initiation, and low pumping frequency. Together, these
findings suggest a composite of underlying risk factors contributes
to the association of Cesarean delivery with DLII and low milk
volume.

Studies of primiparous women revealed that independent risk
factors for DLII were maternal age ≥30 years, body mass index
(BMI) in the overweight or obese range, and infant birth weight
>3600 g (15). A dose-response relation to BMI was evident, with
risk of DLII being 1.84 (95% CI: 1.02–2.80) times higher in over-
weight and 2.21 (95% CI: 1.52–4.30) times higher in obese women,
as compared with women with a BMI in the healthy range (15). In
obese women, DLII was not associated with psychosocial factors,
such as planned duration of breastfeeding or behavioral beliefs
about breast- and bottle-feeding (16). Therefore, it is likely that
there is a physiological basis for the delay. Older maternal age and
higher BMI are known risk factors for gestational diabetes (17).
Lower glucose tolerance in the antenatal period was associated
with longer time to onset of lactation (18), and prolactin release in
response to suckling in the early post-partum period was found to
be significantly lower in the overweight/obese women compared
to healthy weight women (19). Importantly, low prolactin levels in
women, as described for Sheehan’s syndrome, are associated with
failed lactogenesis II (20). In addition, DLII often leads to failed
lactogenesis II (14). Failed lactogenesis II is a condition wherein
the mother is either able to achieve full lactation but an extrinsic
factor has interfered with the process, or one or more factors results
in failure to attain adequate milk production (10). Failed lactoge-
nesis II can be described further in the context of two types of
conditions: a primary inability to produce adequate milk volume,
or a secondary condition as a result of improper breastfeeding
management and/or infant-related problems (10).

METABOLIC-HORMONAL ADAPTATIONS TO LACTATION
Lactation is the continuum of reproduction in mammals, and the
most energetically demanding stage. Metabolically, the reproduc-
tive process in females can be divided into three periods which
correspond to the energetic needs of the fetus and neonate. Period
one spans the first two-thirds of pregnancy. There is little demand
for nutrients by fetus during the first two trimesters, so the mother
uses this time to store energy by increased consumption and
enhanced lipogenesis (21). To support large gains in fetal growth,
the mother transitions to a catabolic state in the last third of
pregnancy, period two. Period two is characterized by increased
gluconeogenesis, decreased peripheral tissue glucose utilization,
increased fatty acid mobilization from adipose, and increased
amino acid mobilization from muscle (22). Period three is lacta-
tion. During this period, the dam’s metabolism changes to accom-
modate the even greater energetic demands of milk synthesis. All
the lactose and protein and most lipids in milk are synthesized in
mammary gland, and thus the mammary gland has a high require-
ment for circulating substrates (glucose, amino acids, free fatty
acids, and triglycerides) (21–23). In addition to further increasing
metabolic responses described for period 2, there are substantial
increases in size and complexity of the maternal intestine, liver,
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and cardiovascular system, including increased mammary blood
flow, increased blood flow to liver and gastrointestinal tract, and
higher cardiac output (24). Thus, the transition from pregnancy
to lactation represents a major physiological change requiring on
the one hand, coordinated changes in various body tissues, and on
the other hand, mammary-specific changes to support a dominant
physiological process (production of milk).

During pregnancy and at the onset of lactation, dramatic
changes in circulating levels of reproductive and metabolic hor-
mones (e.g., estrogen, progesterone, placental lactogen, prolactin,
leptin, and cortisol) occur (12, 25). Hormonal changes stimu-
late metabolic changes in almost every organ of the body so
that nutrients and energy can be diverted to the fetus to support
growth before birth and then to the mammary gland to support
milk synthesis post-partum (26, 27). Therefore, factors affecting
metabolic-hormonal regulation (e.g., obesity, diabetes, hypothy-
roidism) during pregnancy, may also impact the ability of the
mother to initiate lactation.

During pregnancy, the high levels of circulating progesterone
enable differentiation of the mammary gland while inhibiting
the secretory process of the mammary gland. Once the placenta
is expelled after birth, progesterone levels decline rapidly, and
increasing prolactin levels trigger the beginning of lactogenesis
II (28). Neonatal suckling induces a neuroendocrine response that
stimulates secretion of prolactin and glucocorticoids as well as
oxytocin, which stimulates expulsion of milk from the gland (29).
Increases in prolactin, estradiol, and cortisol levels during the
periparturient period decrease peripheral tissue insulin sensitivity
and responsiveness. These changes in insulin homeostasis result
in increased rates of lipolysis and gluconeogenesis and decreased
rates of glucose uptake by adipose and muscle, and decreased pro-
tein synthesis in muscle with concomitant increases in protein
degradation and amino acid release (23, 30). Thyroid hormones
are also essential for efficient milk production (31). A study of
women with insufficient lactation found that the nasal admin-
istration of thyrotropin-releasing factor increased prolactin and
daily milk volume (32).

HYPOTHESIS: METABOLIC–HORMONAL–CIRCADIAN CLOCK
LINK TO DELAYED LACTOGENESIS II
As outlined above,maternal hormonal milieu stimulates metabolic
adaptations to reproductive state and mammary gland respon-
siveness. Therefore, it follows that conditions with a hormonal
etiology (e.g., diabetes, hypothyroidism, or obesity) may inter-
fere with these adaptations and cause a delay in lactogenesis II
(10). Furthermore, some delivery modes and conditions that result
in a delay in breastfeeding initiation and/or breast stimulation
(e.g., pre-term, Cesarean, or a prolonged second stage of labor)
may impact periparturient hormonal milieu needed to stimulate
metabolic and mammary-specific adaptations needed to initiate
copious milk secretion. We hypothesize that disruption of the cir-
cadian timing system during pregnancy and peripartum play a
role in DLII.

The circadian timing system is intimately linked and recip-
rocally regulated by hormones and metabolism, and below we
describe our preliminary studies that support this hypothesis. In
addition, we summarize findings from a comprehensive database

search in PubMed used to further support our hypothesis. In
searching the literature to investigate this hypothesis, we found
one of the immediate challenges encountered was the lack of stud-
ies conducted relating to the circadian timing system in pregnant
or lactating women (33–36). In addition, information about what
was considered normal or abnormal for circadian rhythms in preg-
nancy and lactation was lacking. Thus, much of the evidence used
to develop and support our hypothesis was drawn from studies
conducted on a more general population or inferred from animal
studies.

THE CIRCADIAN TIMING SYSTEM
Nearly all physiological and behavioral functions of animals are
rhythmic including secretion patterns of hormones, sleep–wake
cycles, metabolism, and core body temperature. These circadian
rhythms, 24 h cycles in biochemical, physiological, or behavioral
processes, evolved as a common strategy among animals to coor-
dinate internal systems and synchronize these systems to the
environment (37, 38). Circadian rhythms are generated at the mol-
ecular level by circadian clocks. In mammals, circadian clocks are
regulated hierarchically, with the master circadian clock located
centrally in the suprachiasmatic nuclei (SCN) of the hypothala-
mus. In addition to the SCN,there are peripheral clocks distributed
in every organ. The intrinsic rhythmicity of the SCN is entrained
by synchronization to the 24-h day to regularly occurring envi-
ronmental signals. The light–dark cycle is the most important
environmental cue for entraining the master clock (39). Other cues
include exercise, food availability, temperature, and stress, which
directly or indirectly entrain the SCN (40, 41). The SCN inte-
grates this temporal information and translates it into hormonal
and autonomic signals that influence and synchronize peripheral
clocks in every tissue of the body (42). In turn, peripheral clocks
drive the circadian expression of local transcriptomes, thereby
coordinating metabolism and physiology of the entire animal.

The circadian timing system must continuously adapt to and
synchronize with the environment and the body’s internal signals
in order to organize clocks into a coherent functional network
that regulates behavior and physiology. Hallmarks of organiza-
tion of circadian timing are the perception of environmental
input, integration of time-related information into the circadian
clock “device” (molecular clock), and transmission of adjusted
timing information as output of metabolic and physiological
processes (Figure 1). The molecular clock mechanism is based
on a transcription-translation feedback loop. At the core of this
loop are two transcription factors,CLOCK (or its ortholog NPAS2)
and BMAL1, which in the form of a heterodimer drive rhythmic
expression of output genes either directly via E-box regulatory
element in their promoter regions, or indirectly by other tran-
scription factors whose expression is under clock control (43).
Among transcriptional targets of this complex are Period and
Cryptochrome genes, whose products function as negative regula-
tors of CLOCK/BMAL1-mediated transcription [Figure 1; (44)].
Approximately, 10–20% of genes expressed in a tissue exhibit
circadian rhythms (45). Tissue-specific clock-controlled genes
are involved in rate-limiting steps critical for organ function.
For example, in the liver, molecules involved in metabolism of
carbohydrate, lipid, and cholesterol encode genes that exhibit
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FIGURE 1 | Hallmarks of organization of clocks and circadian timing
system. (A) Illustration of primary input (light) to the SCN and outputs that
include regulation of hormones (e.g., prolactin and cortisol) and metabolism.
(B) Illustration of the transcription-translation feedback loop of the core
molecular clock device, with proposed inputs [prolactin (PRL) and cortisol] and
outputs (regulation of breast development and milk production) of mammary
clock. At the core of the transcription-translation feedback loop are two

transcription factors, CLOCK (or its ortholog NPAS2) and BMAL1, which in the
form of a heterodimer drive rhythmic expression of output genes either
directly via E-box regulatory element in their promoter regions, or indirectly by
other transcription factors whose expression is under clock control (43).
Among transcriptional targets of this complex are Period and Cryptochrome
genes, whose products function as negative regulators of
CLOCK/BMAL1-mediated transcription.

coordinated circadian expression (45). We propose that the mam-
mary clock functions to regulate gland development and metabolic
output [Figure 1; (46)].

Intimate interactions and reciprocal regulation occur between
metabolic and circadian systems. The endogenous circadian tim-
ing system coordinates daily patterns of feeding, energy utilization,
and energy storage across the daily 24 h cycle (47). Many meta-
bolic hormones exhibit circadian rhythms. For example, cortisol
levels are highest in the early morning and lowest at the first part
of the biological night (47). Further, the SCN is responsible for
a 24-h rhythm in plasma glucose concentrations, with the high-
est concentrations occurring toward the beginning of the activity
period (48).

CHRONODISRUPTION: CONSEQUENCES TO METABOLISM
AND HEALTH
Disruptions of normal circadian timing can evoke a multitude of
downstream effects, including reorganizing the entire physiologi-
cal state. Depressive mood (41), light, activity, and eating at night
[e.g.,night-shift work and night-eating syndrome; (49–53)], exces-
sive weight (54), stress, and sleep disturbances (55) have all been
characterized as chronodisruptors, i.e., factors that disrupt circa-
dian rhythms. Circadian disruption can result in disorders such as
diabetes, obesity, and cardiac disease (56–58). In humans, living in
modern industrialized societies with 24 h access to light coupled

with work and social obligations often leads to behaviors that are
inappropriately timed relative to endogenous circadian rhythms.
Night-shift work is an example of severe circadian disruption, as
workers are awake, active, and eating during their biological night
and trying to sleep and fast during their biological day (59).

Animal studies demonstrated that being active and feeding dur-
ing the usual rest phase leads to alterations in metabolism and
weight gain, even with the same caloric intake (60). In humans,
internal desynchronization can be induced by a forced 28-h sleep–
wake cycle (8 h sleep, 20 h awake), which is outside the range
of entrainment for the human circadian clock (61). After four
cycles, this protocol results in circadian misalignment, in which
the behavioral sleep–wake cycle is 12 h out of phase with the cir-
cadian cycle. In these misaligned conditions, leptin rhythms are
blunted, postprandial glucose and insulin are increased, and cor-
tisol rhythms are 180° out of phase with the behavioral rhythm.
Nearly half of the participants undergoing the 28-h cycle exhibited
a pre-diabetic state during circadian misalignment (62).

Epidemiological studies have shown night-shift work, which
disrupts the circadian system, is associated with development
of obesity. Studies of women with phase-delayed eating pat-
terns, such as not eating breakfast or night-eating syndrome,
are associated with increased BMI, altered metabolism, changes
in plasma hormone concentrations and rhythms, and depressive
mood (52, 53). At the molecular level in humans, a single

Frontiers in Nutrition | Pharmaceutical Medicine and Outcomes Research February 2015 | Volume 2 | Article 4 | 4

http://www.frontiersin.org/Pharmaceutical_Medicine_and_Outcomes_Research
http://www.frontiersin.org/Pharmaceutical_Medicine_and_Outcomes_Research/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fu et al. Impacts of chronodisruption on lactogenesis

nucleotide polymorphism in CLOCK is associated with abnormal
fatty acid metabolism and development of fatty liver, and a poly-
morphism in the BMAL1 core circadian clock gene is associated
with susceptibility to hypertension and type-2 diabetes (63, 64).

In reciprocal, the over-fat state is characterized by alterations of
circadian rhythms. In obese mice, there is attenuation of rhythmic
gene expression patterns (65), and a delay in circadian entrainment
to light-phase shift (66). Circadian rhythms of glucose and insulin
are elevated in obese rats throughout the 24-h period. Levels of
growth hormone, prolactin, and thyroxine are depressed. Serum
levels of corticosterone do not exhibit distinct circadian rhythms
and are elevated throughout the circadian cycle in obese rats (67).
Similarly, in obese humans, basal levels of cortisol are higher with
an attenuation of the circadian rhythm (68) and a lengthening of
rhythm period (54).

With the advent of electric lighting, humans in industrialized
societies are exposed to light at night. The natural light–dark cycle
is the most salient cue for entraining the master clock to the 24-h
day. The SCN communicates photoperiodic information to the
pineal gland, where light inhibits melatonin secretion, such that
melatonin secretion normally occurs at night. Melatonin has a
fundamental role in regulating and timing several physiological
functions, including glucose homeostasis, insulin secretion, and
energy metabolism (69). As such, metabolism is impaired after a
reduction in melatonin production, and the basic processes asso-
ciated with acquisition and utilization of energy are functionally
altered after exposure to extended periods of artificial lighting
(70). Chronic light at night exposure suppresses melatonin levels
as well as disrupts central clock rhythms, both of which are impli-
cated in metabolic disturbances that predispose individuals to the
development of type-2 diabetes, obesity, and metabolic syndrome
(70). For example, a recent cross-sectional study of 500 people in
Japan (71) found that elderly people sleeping in lighter rooms had
higher body weight, waist circumference, and BMI; in that study,
light exposure and obesity outcome variables were all objectively
measured, although the BMI of participants was generally low (an
average of 22.8). A large cohort study of 100,000 women revealed
that the association between light at night exposure and obesity
increased the odds of obesity with increasing levels of light at night
exposure (72).

Sleep is cooperatively regulated by homeostatic and circa-
dian factors. Voluntary sleep curtailment has become common
in many modern life styles. For example, although the National
Institutes of Health recommends that adults need 7–8 h of sleep
per day (73), data from the National Health Interview Survey,
found nearly 30% of adults reported an average of ≤6 h of sleep
per day in 2005–2007 (74). Less than 1 week of sleep curtail-
ment in healthy young men was associated with lower glucose
tolerance, lower thyrotropin concentrations, and raised evening
concentrations of cortisol (75). Poor sleep quality is also asso-
ciated with increased risk for depression (76). Whereas short
sleep duration is associated with increased incidence of dia-
betes, obesity (77), as well as increased all-cause mortality (78),
there also appears to be a consistent association of poor sleep
quality and short sleep duration with increased risk of cardio-
vascular disease, an association that is stronger in women than
men (79, 80).

Disrupted sleep includes both abnormal sleep patterns and
sleep deprivation. Studies have shown that disrupted sleep cycles
impair the function of adipocytes, which regulate leptin levels (81).
Abnormal leptin levels may lead to irregular meal times (82). This
disrupts the balance between insulin and glucose cycles, causing
reductions in insulin sensitivity and increases in glucose concen-
tration, a prelude to diabetes (47, 81, 83). Lipid metabolism is
similarly impaired, which may lead to increased lipogenesis, and
by extension, obesity (82, 83). Impaired carbohydrate and lipid
metabolism from disrupted circadian rhythms have also been
linked to increased risk of cardiovascular disease (83, 84).

In human studies of shift work and atypical schedules, irregular
sleep and disruptive circadian rhythms appear together, indicat-
ing that the two are closely related and that the presence of one
usually entails the other (85, 86). In humans, sleep is normally
timed to occur during the biological night, when body temper-
ature is low and melatonin is synthesized. The sleep–wake cycle,
and associated cycles of darkness and light and fasting and feed-
ing, interacts with the circadian system and is a major driving
factor of rhythms in physiology and behavior (87). Desynchrony
of sleep-wake timing and other circadian rhythms, such as occurs
in shift work and jet-lag, is associated with disruption of rhythmic-
ity in physiology and endocrinology (87). Insufficient or mistimed
sleep reduces the rhythmicity of clock-controlled transcripts and
expression of core circadian clock genes. Thus, circadian disrup-
tion occurs as a result of irregular sleep patterns, (47, 82, 85, 86),
and in converse circadian abnormalities can also result in sleep
disturbances (88).

In summary, changes in glucose and lipid metabolism, abnor-
mally high levels of cortisol at night, changes in melatonin, leptin,
and thyroid hormone levels, as well as cardiovascular problems
and development of type-2 diabetes are commonly associated with
disruptions in circadian rhythms. Exposure to light, activity or
eating at night, sleep disturbances/curtailment, depression, and
stress are common chronodisruptors in many modern life styles
and work schedules, and thus may be partly responsible for the rise
in metabolic disease and obesity apparent in many industrialized
societies (89).

CIRCADIAN SYSTEM REGULATION OF AND ADAPTATIONS
TO PREGNANCY AND LACTATION
As highlighted in multiple recent review articles (33, 90–92), much
more work is needed to understand interactions among circadian
clocks, metabolism, and female reproductive cycles and states.
What is known, is that the circadian system plays a key role in
the timing of reproductive events and hormones important to the
regulation of pregnancy and lactation. For example, neural mech-
anisms regulating ovulation are under circadian control in many
species to ensure that the timing of greatest fertility coincides with
the period of maximal sexual motivation (93). SCN lesions result
in infertility in rodents, due to the lack of the ability to synchronize
events for ovulation (94), and mice with mutant core clock genes
or core clock-gene knocked-out mice exhibit reduced fertility and
fecundity (95, 96).

The SCN has been shown to be necessary for normal func-
tioning of the hypothalamic-pituitary-gonadal (HPG) axis, and
rhythms of clock-gene expression have been recorded in brain
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regions controlling both the HPG and hypothalamic-pituitary-
adrenal (HPA) axis (97). Rhythmic gene expression of prolactin in
pituitary mammotrophs was shown to be mediated by CLOCK–
BMAL1 binding to clock-gene regulatory elements (98). In addi-
tion, ovariectomized and estradiol-treated rats fail to exhibit a
prolactin surge following SCN lesions. Furthermore, SCN lesion
also prevents the twice daily prolactin surge induced by mating in
rodents, which maintains the corpus luteum and thus the secre-
tion of progesterone and pregnancy maintenance [for review, see
Ref. (93)], suggesting the central clock plays a direct or indirect
role in regulation of prolactin secretion. Therefore, it is interesting
to speculate that decreased blood prolactin observed in healthy,
young non-pregnant women following exposure to partial sleep
deprivation (99) is due to the disruption of the master clock.

Circadian rhythms in behavior and physiology change sub-
stantially as female mammals transition through the reproductive
states of non-pregnancy, pregnancy, and lactation, with changes
in circadian rhythms supporting physiological demands unique
to each of these stages (100–104). For example, to compensate
for increases in the daily temperature minimum during gesta-
tion studies of pregnant laboratory animals showed phase of body
temperature rhythm was advanced and amplitude decreased rel-
ative to non-pregnant controls (100). Further, to compensate for
the increased need for sleep in early pregnancy, sleep patterns are
altered in pregnant rodents (103, 105).

Sleep is also significantly impacted by pregnancy in women.
A study of 192 pregnant women surveyed retrospectively found
88% had alterations in sleep compared with their usual experience
(106). Reported changes included insomnia, parasomnias (night-
mares and night terrors), restless leg syndrome, snoring, and sleep
apnea. Among the most frequent self-reported causes of sleep dis-
turbance during pregnancy were urinary frequency, back or hip
ache, and heartburn. A prospective, cohort study of healthy nul-
liparous women found compared with the baseline assessment
done before 20 weeks gestation, mean sleep duration in the third
trimester was significantly shorter (7.4 h compared with 7.0 h),and
overall poor sleep quality became significantly more common as
pregnancy progressed (107). Okun and Coussons-Read collected
qualitative sleep data at 12, 24, and 36 weeks’ gestation, and found
as early as 12 weeks, pregnant women reported an increased num-
ber of naps, nocturnal awakenings, time spent awake during the
night, and poorer sleep quality than non-pregnant women (108).

The dramatic fluctuations in reproductive hormones that occur
during pregnancy and the transition from pregnancy to the
post-partum period are accompanied by alterations in circadian
rhythms of melatonin (109, 110) and cortisol (111). In season-
ally breeding animals, melatonin regulates reproductive hormones
and behavior (112). During pregnancy in humans, night time
melatonin levels increase linearly with progressive weeks of ges-
tation, and fall in the early post-partum period (110). Changes
in cortisol dynamics during pregnancy are due in part to the
remodeling of maternal HPA axis, which results in an altered
maternal stress response and energy balance, as well as rising pla-
cental cortico-releasing hormone (CRH) levels (113). Change in
the HPA axis and placental CRH result in attenuated rhythms
of plasma cortisol and a period of hypercortisolism beginning in
mid-gestation. Following birth of the neonate, maternal plasma

levels of cortisol drop due to loss of placental CRH, if the mother
breastfeeds, attenuation in cortisol rhythms and stress response
continue throughout lactation (114, 115). Synchronization among
the multitude of molecular clocks in the body is believed to be reg-
ulated in part by cortisol circadian rhythms which are regulated
by the central clock (116). Thus, changes in cortisol secretion pat-
terns during pregnancy and lactation have the potential to affect
circadian rhythms across the entire body.

Timing of parturition in women also shows signs of being reg-
ulated by the circadian timing system. For example, the onset of
labor and spontaneous membrane rupture peaks at night between
midnight and 4:00 a.m. (117–119), and the timing of births peak
around 1:00–2:00 p.m. for primiparous women (120). Further, a
nested, randomized, controlled clinical trial that compared morn-
ing versus evening administration of prostaglandin and its success
rate in inducing labor, reported no difference in rate of Cesarean
delivery, however morning inductions required less oxytocin, had
a shorter induction to birth interval, and were less likely to result
in instrumental vaginal births for primiparous mothers (121).

During lactation in women, the potent lactogens, prolactin and
cortisol, exhibit circadian variation in secretion. The prolactin-
secretory response to nursing is superimposed on the endogenous
circadian rhythm of prolactin secretion, thus the suckling stimu-
lus elevates prolactin levels more effectively at certain times of day
when the circadian input enhances the suckling stimulus-evoked
secretory response (122). Studies in lactating rabbits revealed tim-
ing the single bout of daily suckling that occurs in this species
shifted PER1 expression in SCN clock and in peripheral clocks
of the brain (76, 77). Our in vitro studies showed prolactin and
glucocorticoids can directly affect mammary clock, with prolactin
inducing phase shifts in core clock genes expression, suggesting
that external cues emanating from neonate can have effects on
maternal circadian physiology.

Our rodent studies also demonstrated that during the transi-
tion from pregnancy to lactation, dynamic changes in core clocks
occurred in multiple tissues. The amplitude of core clock genes’
expression increased significantly in the SCN and liver (123). Work
of others found that expression of PER2 expression shifted and
amplitude increased in SCN in early pregnant versus diestrus
rats (124). The central clock functions to synchronize the tim-
ing of metabolic and reproductive functions, and thus changes
in the SCN during the transition in physiological states may
function to mediate coordinated changes in tissue-specific metab-
olism needed to support pregnancy and lactation. Increases in
amplitude of hepatic expression of core clock genes’ rhythms
during the transition from pregnancy to lactation, likely reflect
the increase in liver metabolic output (123). In addition, changes
revealed in mammary clock dynamics led us to hypothesize that
differentiation-driven changes during the transition from preg-
nancy to lactation in the mammary clock are stimulated, in part,
by peripartum changes in prolactin and glucocorticoids. Further,
we envision that differentiation-associated changes in mammary
clock mediate the increase in metabolic output of the gland during
lactation (123).

Milk synthesis and composition shows circadian variation in
lactating women (24). Approximately, seven percent of the genes
expressed in the lactating breast show circadian oscillation; many
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of these genes regulate cell growth and differentiation as well
as metabolic pathways (125). Offspring of homozygous female
Clock-∆19 mutant mice fail to thrive suggesting that the muta-
tion affects the dam’s ability to support milk production during
lactation. Our studies of Clock∆19 mice revealed poorer mam-
mary development and evidence for delayed or failed lactogenesis
II, with in vitro studies demonstrating a role for Clock in reg-
ulating mammary epithelial growth and differentiation (unpub-
lished data). Miller et al. have evidence to suggest that prolactin
release is altered in Clock∆19 mice (126). Thus, both systemic and
mammary-specific alterations likely account for negative impact
of Clock∆19 mutation on lactation. The photoperiod effect on
ruminant milk production (127) and our studies with cattle show-
ing circadian disruption significantly decreases milk production
(46), also support a role for the circadian timing system in mediat-
ing systemic metabolism and mammary metabolic output during
lactation.

CONSEQUENCES OF CHRONODISRUPTION ON ABILITY OF
MOTHER TO SUPPORT OFFSPRING
Several rodent studies have been designed to determine if circadian
disruption impacts pregnancy outcome. These studies found that
exposing mice immediately after confirmed mating to continuous
shifts in the light-dark cycle (a chronic jet-lag model) resulted in a
significant decrease in the number of full-term pregnancies (128).
Rat dams exposed to chronic jet-lag throughout gestation gained
70% less weight during the first week of pregnancy than those
housed in control conditions. In late pregnancy (gestation day 20),
chronic jet-lag exposure profoundly disrupted timing of corticos-
terone, leptin, glucose, insulin, free fatty acids, triglycerides, and
cholesterol concentrations in these dams. Further, expression of
gluconeogenic and circadian clock genes in maternal and fetal liver
was arrhythmic relative to controls (129). Offspring of rat dams
exposed to a chronic jet-lag paradigm from the first day of preg-
nancy to lactation day 10 developed metabolic problems such as
obesity, hyperleptinemia, and glucose tolerance/insulin insensitiv-
ity when they reached maturity (130). These studies demonstrate
that exposure to chronic circadian disruption during pregnancy
impacts the normal maternal metabolic-hormonal adaptations
to this physiological state. Further, these perturbations may con-
tribute to the programing of poor metabolic homeostasis in adult
offspring.

In humans, a polymorphism in the circadian clock-gene
BMAL1 was shown to be associated with increased risk of mis-
carriages (131). Studies of shift workers found night and rotating
shift work during pregnancy increased the risk of pre-term birth,
low birth weight, and miscarriage (132, 133). For example, a retro-
spective study of a large cohort in women (National Birth Cohort
in Denmark) reported a fixed night work schedule increases risk
of post-term birth (odds ratio, 1.35; 95% CI, 1.01–1.79). Fixed
evening work had a higher risk of full-term low birth weight (odds
ratio, 1.80; 95% CI, 1.10–2.94); and shift work as a group showed a
slight excess of small-for-gestational-age babies (odds ratio, 1.09;
95% CI, 1.00–1.18) (134). A population-based prospective cohort
study conducted in Sri Lanka found risk factors for small-for-
gestational-age were shift work and exposure to physical and
chemical hazards during second and third trimesters (odds ratio,

4.20; 95% CI, 1.10–16.0), as well as sleeping ≤8 h during second
or third trimesters (odds ratio, 2.23; 95% CI, 1.08–4.59) (135).

A prospective cohort study of approximately 1,200 healthy
pregnant women was used to evaluate the influence of mater-
nal self-reported sleep duration during early pregnancy on blood
pressure levels and risk of hypertensive disorders of pregnancy.
Investigators found that the mean third trimester systolic blood
pressure was higher for women reporting ≤6 and 7–8 h sleep
compared with women reporting 9 h of sleep, with odds ratio
for pre-eclampsia in very short (<5 h) sleepers being 9.52 (95%
CI, 1.83–49.40) (136). Sleep disturbances in early pregnancy are
also associated with higher risk for development of hyperglycemia
(137). Moreover, gestational diabetes mellitus risk was increased
among women sleeping <4 h compared with those sleeping 9 h
per night during early pregnancy with relative risk for overweight
women threefold higher (138). Snoring, which is associated with
sleep disturbances, was associated with a 1.86-fold (95% CI, 0.88–
3.94) increased risk of gestational diabetes, with the risk being
6.9-fold (95% CI, 2.87–16.6) higher in overweight women who
snored compared with lean women (138). Hyperleptinemia is also
an important clinical risk factor for adverse pregnancy outcomes
such as pre-eclampsia and gestational diabetes mellitus (139–141).
A cross-sectional study of 830 pregnant women found that shorter
sleep (≤5 h) and longer sleep (≥9 h) were associated with elevated
leptin among overweight or obese women (142).

Researchers have also linked abnormalities in circadian
rhythms with development of mood disorders such as bipo-
lar disorder, major depression, and seasonal affective disorder
(143, 144). Individuals with major depression exhibit blunted or
abnormal circadian rhythms in body temperature, plasma corti-
sol, norepinephrine, thyroid stimulating hormone, blood pressure,
pulse, and melatonin (143). Studies of depressed pregnant women
found significantly lower levels and phased-advanced melatonin
secretion in pregnant women with personal and family histories
of depression relative to women without history of depression
(110). Further, in healthy women, plasma melatonin levels became
increasingly elevated as pregnancy progressed but this increase
did not occur in depressed women (110). Thus, it is interesting
to speculate whether mothers with depression are at an increased
risk for shorter breastfeeding duration and increased breastfeed-
ing difficulties (145), in part, through physiological disruption
of the circadian timing system, which in turn impacts her milk
production (Figure 2).

The association of maternal obesity with DLII appears to have
a physiological basis related to alterations in hormones and meta-
bolic adaptations needed to initiate copious milk production
(Figure 2). In rodent models of obesity, the normal hormonal
response to the periparturient period is altered, with a lower rise in
prolactin and insulin levels during the transition from pregnancy
to lactation and significantly higher corticosterone levels (146–
148). In obese humans, basal levels of cortisol are also higher with
an attenuation of the circadian rhythm (68) and a lengthening
of rhythm period (54). Circadian rhythms of plasma cortisol are
believed to be a primary signal for synchronization of periph-
eral clocks (149). Glucocorticoids also regulate milk synthesis
(150). However, antenatal treatment with glucocorticoids delays
secretory activation in ewes (151), and treatment of animals with
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FIGURE 2 | Proposed relationships among metabolic-hormonal-circadian
clock changes needed to initiate lactogenesis II during the periparturient
period, and how related risk factors interfere with initiation. Arrows

indicate inductive relationship. “T” indicates an inhibitory relationship.
Question marks indicate areas needing further research to support proposed
relationship/mechanism.

supra-physiological of glucocorticoids depresses milk production
in an established lactation (150). Thus, the delay in onset of lacto-
genesis II experienced by obese women may be due to alterations in
coordinated changes and interactions among circadian timing sys-
tem, endocrine milieu, and metabolism needed to initiate copious
milk secretion (Figure 2).

CONCLUSION AND POTENTIAL INTERVENTIONS
Although there is a paucity of information available to understand
the role of the circadian timing system in mediating metabolic and
hormonal adaptations to pregnancy and lactation, there is strong
evidence that clocks play a role in regulating metabolic and hor-
monal homeostasis in animals. The circadian system functions to
prepare physiological systems and behavioral activity for antici-
pated changes in the environment (e.g., day–night cycle). In addi-
tion, the circadian system also prepares for anticipated changes
in physiological–reproductive state (e.g., seasonal fertility in some
species). Chronic disruption of the circadian timing system has
negative impacts on fertility and fecundity in females. Fertility
and fecundity depend on precise hormonal timing and adequate
metabolic adaptions to support the extra energy investment of
reproduction (92, 152). Similarly, the initiation of lactogenesis II,
requires timing coordinated changes in hormones and metabolism
to initiate copious milk production in the early post-partum. Thus,
we hypothesize that chronic disruption of the maternal circadian
timing system during pregnancy and peripartum alters hormones
and metabolic adaptations resulting in DLII (Figure 2).

Human lactation is a complex phenomenon and the initia-
tion and duration of breastfeeding is influenced by many demo-
graphic, physical, social, and psychological variables. Interventions
developed to increase the rates of successful breastfeeding target
management strategies to ensure adequate milk supply (153–155).
Although there is evidence to suggest that the circadian system
plays a significant role in lactation and maternal behavior, cur-
rent breastfeeding interventions do not encompass management

strategies and education that take into account circadian disrup-
tions. Depressive mood, light, activity, and eating at night (e.g.,
night-shift work and night-eating syndrome), excessive weight,
and sleep disturbances are well characterized chronodisruptors.
These chronodisruptors have also been associated with hor-
monal and metabolic alterations during pregnancy and inadequate
breastfeeding outcomes.

Therefore, we propose the need to test interventions aimed
at maintaining circadian alignment (e.g., limiting exposure to
chronodisruption) during three stages that impact the ability of
the mother to initiate and maintain lactogenesis: (1) during preg-
nancy; (2) in the hospital; and (3) after post-partum discharge
from the hospital. Interventions during pregnancy may include,
raising mothers’ awareness of their sleep, eating and exercise
patterns through diaries and self-monitoring, as well and edu-
cating mothers about sleep hygiene and consequences of sleep
deprivation and interrupted sleep cycle and exposure to light at
night.

Good sleep hygiene, together with circadian alignment of food
intake, a regular meal frequency, as well as attention for pro-
tein intake or diets, may contribute to cure sleep abnormalities
and overweight/obesity (47). Circadian alignment diminishes the
urge to overeat, normalizes substrate oxidation, stress, and insulin
and glucose metabolism. In addition, circadian alignment impacts
leptin concentrations, lipid metabolism, blood pressure, appetite,
energy expenditure, and substrate oxidation, and normalizes the
experience of food reward (47). For example, a clinical trial inves-
tigated whether sleep extension under real-life conditions is a
feasible intervention in 16 healthy non-obese adults who were
chronically sleep restricted (156). The intervention was 2 weeks
of habitual time in bed, followed by 6 weeks during which par-
ticipants were instructed to increase their time in bed by 1 h
per day. Continuous actigraphy monitoring and daily sleep logs
during the entire study showed that sleep time during week-
days increased (mean actigraphic data: 44± 34 min, P < 0.0001;
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polysomnographic data: 49± 68 min, P = 0.014), without any sig-
nificant change during weekends. Changes from habitual time in
bed to the end of the intervention in total sleep time correlated
with changes in glucose and insulin levels, as well as with indices
in insulin sensitivity.

In the hospital, interventions may include implementing light–
dark cycles and/or light filters that help to maintain circadian
alignment; educating families about the importance of limited
visiting hours and number of visitors; and implementing Baby
Friendly Hospital Initiative (157) to include quiet time and light-
dark cycles. Discharge interventions may include providing educa-
tion about sleep hygiene, diet, and activities important to maintain
circadian alignment.

Exposure to lighting environments that more closely align to
the Earth’s natural light–dark cycles may prove to limit metabolic-
hormonal disturbances during pregnancy and promote normal
metabolic-hormonal adaptations during the peripartum needed
to initiate lactation. An example of the recognition that hospital
lighting environment impacts physiology, health, and develop-
ment, comes from studies of infants in Neonatal Intensive Care
Units (NICU) [for review, see Ref. (158)]. Providing a light–dark
cycle in the NICU increased sleeping time in infants, decreased
the time spent feeding, and increased weight gain resulting in
earlier hospital discharge relative to infants exposed to constant
lighting typical of some hospital nurseries (159, 160). In addi-
tion, exposure to a light–dark cycle promoted heart rate stability,
improved oxygen saturation, establishment of daily melatonin
rhythms, and a better tolerance to milk (160). These studies
demonstrate that exposure to a light–dark cycle immediately after
birth promotes beneficial effects on the development of infants,
and thus support the need for research on the impact of hospi-
tal lighting environment on maternal physiology and maternal-
offspring interactions in the peripartum that affect breastfeeding
outcomes.

Recent studies using animal and clinical models have demon-
strated that filtering short wavelengths (below 480 nm) for noc-
turnal lighting can attenuate alterations in hormone secretion
(melatonin and glucocorticoids), and in central and peripheral
clock-gene expression induced by nighttime light exposure (161).
In humans, use of optical filters led to an improvement in mood
and cognitive performance under controlled laboratory condi-
tions as well as during field-based shiftwork studies. For example,
studies found that use of optical filters during shift work increased
sleep duration and quality on nights immediately following night
shifts (161). Thus, a method to improve or prevent many of the
health problems associated with circadian misalignment, includ-
ing timing to onset of lactogenesis II may be to incorporate optical
filters into glasses or as coverings for light bulbs in work places
and hospitals for procedures that require night time exposure to
light (161).

If these proposed interventions prove to mitigate the develop-
ment of metabolic and hormonal imbalances that increase the risk
of DLII, the rates of adequate breastfeeding may increase. Impor-
tantly, since many of the external factors that disrupt circadian
clocks are modifiable by changes in lifestyle or external environ-
ment, the interventions we suggest are minimally invasive and thus
are readily implementable during pregnancy and peripartum.
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