
## **Setting the Context**

Yamaha is as a leader in marine propeller manufacturing. Scheduling jobs everyday slows down production and wastes resources if not done right. Our team is working with Yamaha to make their daily job-shop scheduling more efficient. By improving the workflow and balancing equipment, and labor constraints, our goal is to automate the process that ensures products are made and delivered on time.

## **Central Questions:**

- How can we create a scheduling model that is effective, efficient, and not too complicated?
- How can we handle scheduling challenges and unexpected issues to keep production running smoothly?

## Marine propeller manufacturing process (Manual):



## **References & Acknowledgements**

Thank you for all the support and assistance:

- Our TA: Jebran Syed
- Our Mentors: William Irwin & Aaron Grinstead
- The Data Mine Staff

# Data Under

We set out looking first sources we human fact

- The Orde **PO** sheet
- The num manufac
- Automat currently

## Data Prepa

- 1. Map the
  - Link t descr
  - Make
- 2. Extract
- Large

Fronte Interface VÌ schedul modify inpu & constrair

# **Production Scheduling Optimization in** Marine Propeller Manufacturing

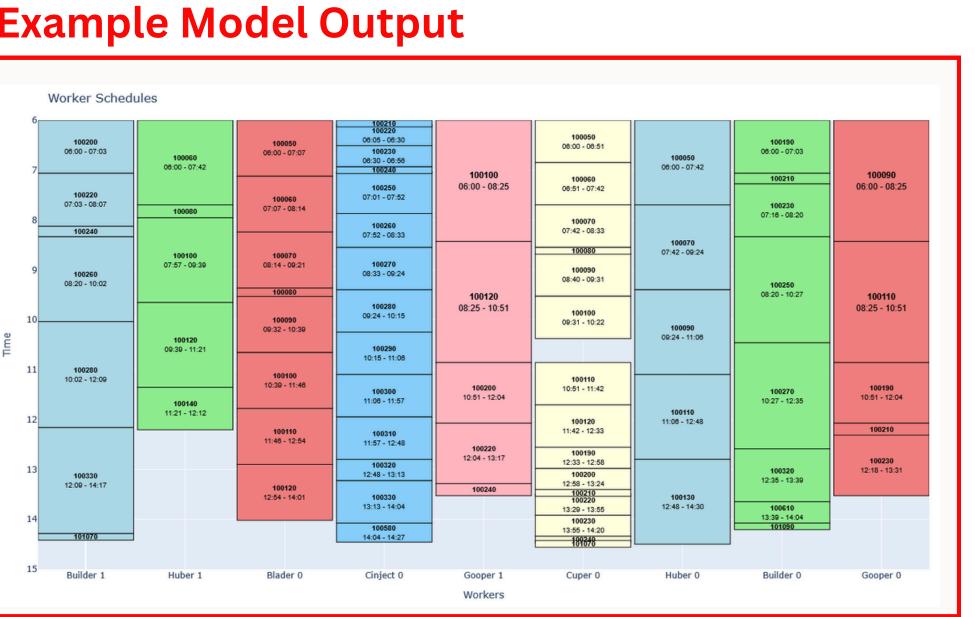
Aditya Agarwal, Anoushka Sanjeev Madavi, Enes Ercikan, Huynh Quang Huy Nguyen, Jakub Sebastian Omylak, Mohammad Hossein Jamshidnejad, Oviya Arulraj, Rishi Rao, Roshan Mani Rao Ram, Savni Maheshwari, Siva Sai Karthikeya Nandagiri, Vishwa Bhushan Patel Bhushan Pa Gaddam

| erstanding                                                                                                                                                                             |                                                                                       | Scheduling                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| t to understand the data by<br>rst understanding the various data<br>re had, constraints owing to the<br>ctor and existing processes                                                   | 5 Data<br>Sources                                                                     | Automates ma<br>assignments,<br>generating wo                                                         |
| ler Sheet, the Master sheet, the<br>et from Yamaha Marine U.S.<br>nber of operators, the<br>cturing process order and etc.<br>ating manual scheduling<br>ly accomplished by two people | <ul> <li>25+ Scheduling<br/>Constraints</li> <li>3 Disparate<br/>Processes</li> </ul> | 1. Dynamic t<br>gooping st<br>needed.<br>2. Progress t<br>(e.g., Cup<br>3. Feasibility<br>practical s |
| aration                                                                                                                                                                                |                                                                                       | 4. Linear tim<br>procRate,                                                                            |
| e propeller IDs to descriptions:<br>the prop IDs to its materials<br>ription<br>es tracing this prop easier.<br>blade count:                                                           | OPD<br>One-Piece Die<br>Prop inject                                                   | Example More<br>Worker Schedules                                                                      |

• Pull the blade from item description 3. Classify by their manufacturing process:

• Types: OPD/Manual, High Binder, Small,

4. Split Large parts for Flexible Scheduling: Break down large batches into smaller ones to ease scheduling


|                                      |                                      | <b>YAMAHA</b> |        |     |
|--------------------------------------|--------------------------------------|---------------|--------|-----|
| 🗾 Uploa                              | d & Process                          | Daily Sched   | lule 🖙 |     |
| 🗁 Upload 📊 Results Metr              | ics                                  |               |        |     |
| 📤 Upload Dail                        | y Schedule                           |               |        |     |
| Upload an Excel file <b>or</b> enter | a file path for the daily production | schedule.     |        |     |
| Choose an Excel file                 |                                      |               |        |     |
| Drag and drop file                   |                                      |               |        | Bro |
| Or enter file path:                  |                                      |               |        |     |
|                                      |                                      |               |        |     |
|                                      |                                      |               |        |     |







# Model Insights

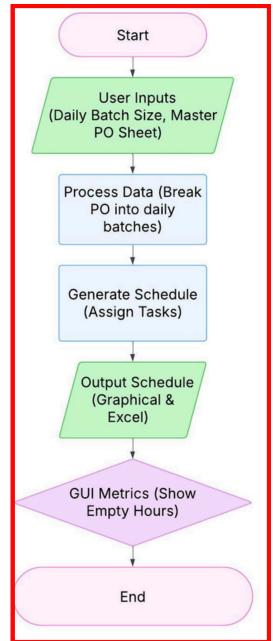


### **Future Goals**



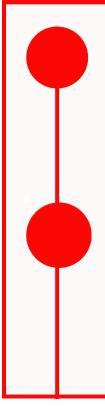
**Expand process coverage to** handle foundry tasks and automate complete propeller production.




nanufacturing job scheduling by optimizing task managing shift timings within capacity limits, and vorker-specific schedules while updating the master job list.

timing adjustments: Ensures proper sequencing (e.g., starts only after building ends) by realigning start times as

tracking: Updates the master job list with scheduled dates Date), enabling accurate monitoring and future planning. y focus: Removes jobs exceeding the shift's end to maintain schedules, rather than optimizing globally.


**ne assumption:** Calculates job duration as quantity **×** , simplifying scheduling but assuming constant efficiency.





Adapt the model to handle more complex job dependencies and multi-shift scenarios.

### **Business Value**



Unified automation integrates 3 disparate processes, saving 60 hrs/month through an intuitive platform.

With routine execution and adaptable inputs and constraints, supervisors can focus on tasks that matter.