
The Data Mine Corporate Partners Symposium 2025

Turfgrass Science at Purdue

Department of Horticulture & Landscape ArchitecturePDMR CHAT BOT
Team Members: Nathan Steurer, Daniel Harradine, Hruthin Muddasani, Yu-Jen Chen, John Graham Chiles,

Tejomay Marathe, Vachan Arora, Ken Thai Nguyen, Madhavan Prasanna, Sharan Suthaharan

The Purpose of this Project
• This project aims to create a learned language model (LLM) to optimize the search for

turf grass disease treatments using 26 years of published field trials stored in Plant
Disease Management Reports (PDMRs).

• Currently, the turfgrass treatment resides in the PDMR's that must be manually searched
– a cumbersome process.

• By creating an LLM with the ability to search through PDMR's and create a database of
the information, we improve the accessibility of the information for stakeholders.

Parsing of the PDMRs
Throughout this semester the parsing team looked at three
different ways of parsing the PDMR’s:
• Custom Computer Vision (CV) solution, splitting the

work into five stages: Fetching, Parsing, Data Cleaning 1,
Data Cleaning 2, and Output generation.

• Matlab's Text Analytics Toolbox
• ChatGPT to parse the PDMRs and transform tables into

CSV files.

To increase the ability for an LLM to properly read the PDMR’s so it can give accurate
responses we split the team into three different groups.
• Parsing – First, for the LLM to more easily read the PDMR’s the files needed to be more

standardized.
• Database – Next, the PDMR’s need to be stored in a data so the LLM could easily search

for relevant PDMR’s needed for the response.
• LLM – The LLM itself needed to be engineered in a way that it would look for not only

the correct treatment but the most recent one.

Our Plan

Research Into The Project Parsing Team:
• After handling text

extraction from PDMRs
with Computer Vision,
we clean it up and
separate the paragraphs

• Trained the learning
algorithm of ChatGPT to
build accuracy

• Used a pipeline into
ChatGPT from Python to
handle different table
formats in PDMRs

Storing The PDMR’s
The best form for storing the CSV files was on a vector database.
Which would allow the LLM to more easily find relevant files to any
question. This was done through a myriad of tools.
• Docker
• VS Code.
• Milvus
The first step was to code a vector database. Then to encode the data
into the database. The final step was to create indicator’s allowing for
files to be queried faster.

Training the LLM
After much deliberation between open-source or closed-source, we
eventually choose an open-source because of the reduced cost.
• The LLM that we settled with was lama 3.2. We were able to

more easily prompt engineer the LLM by using Ollama to run it
without many limits.

• To decrease the amount of time it takes the LLM to respond we
had Purdue’s Anvil host the Ollama where we could import our
desired LLM.

Database Team:
• To improve LLM

performance,
we created a vector
database for retrieval
augmented-generation
(RAG)

• Hosted the vector and
SQL database of
PDMR's on Docker
and Milvus as backend

• Training LLM using
unsupervised learning
on vector database

• Establishing public
hosting on Anvil for
easy connection/ setup

Acknowledgements

Conclusion

Future Goals

We would like to thank Dr. Miller, Gen Sasaki, Carmen Lee, and Sathvik Hegde for all the help on this project. We
would also like to thank the staff at Data Mine team with all the support they have gave us.

• The most pressing goal would be continuing to improve the way the
PDMR’s can be parsed in a more efficient method, handling edge cases such
as tables spanning multiple pages, or non-standardized formats.

• Prompt engineer the LLM to give better responses and reduce the chance
that the LLM gives a false response or hallucinates.

• Generalize the solution to account for other types of PDMRs, not just
turfgrass.

• Fine-tune response times by resolving bottlenecks in processing and
inference.

• Enable LLM to help perform data analysis and other tasks on the PDMRs as
directed by the user.

• We were able to increase much in the two semesters that we worked on this
project. Finding the many different challenges working with LLM’s.

• There are many different solutions to the problems that we faced. Leading
multiple branched methods of parsing, storing, and reading through the
LLM.

• However, in the end we were able to successfully parse the PDMR’s into
readable CSV files. Also being able to import them into a vector datable
using Milvus. With the final out from the LLM at least being more capable
compared to the previous version.

References

User Interface

2

1 3LLM Team:
• Used database to

query the LLM using
RAG.

• Fine-tuning and
prompt engineering
to ensure correct
output.

• Researched state of
the art methods to
handle tabular data as
well as textual data.

• Conducted
exhaustive testing
with a set question
bank in order to
verify outputs

• Created user interface
(UI) using pre-existing
tooling in order to
achieve professional
results akin to the
DeepSeek or ChatGPT
interface.

• Utilized tools such as
AI-SDK along with
Vercel in order to
simplify and speed up
deployment process,
while also enabling
easy switching of
LLMs if necessary.

Ollama. (n.d.). Ollama Documentation. Retrieved from
https://github.com/ollama/ollama/blob/main/docs/README.md
Milvus. (n.d.). Milvus Documentation. Retrieved from https://milvus.io/docs
All the various turfgrass related PDMRs.
Sui, Y., Zhou, M., Zhou, M., Han, S., & Zhang, D. (2024, March). Table Meets LLM: Can Large Language Models
Understand Structured Table Data? A Benchmark and Empirical Study. The 17th ACM International Conference on
Web Search and Data Mining (WSDM ’24).

https://github.com/ollama/ollama/blob/main/docs/README.md
https://milvus.io/docs

