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The Purpose of this Project
• This project aims to create a learned language model (LLM) to optimize the search for 

turf grass disease treatments using 26 years of published field trials stored in Plant 
Disease Management Reports (PDMRs).

• Currently, the turfgrass treatment resides in the PDMR's that must be manually searched 
– a cumbersome process.

• By creating an LLM with the ability to search through PDMR's and create a database of 
the information,  we improve the accessibility of the information for stakeholders.

Parsing of the PDMRs
Throughout this semester the parsing team looked at three 
different ways of parsing the PDMR’s:
• Custom Computer Vision (CV) solution, splitting the 

work into five stages: Fetching, Parsing, Data Cleaning 1, 
Data Cleaning 2, and Output generation. 

• Matlab's Text Analytics Toolbox
• ChatGPT to parse the PDMRs and transform tables into 

CSV files.

To increase the ability for an LLM to properly read the PDMR’s so it can give accurate 
responses we split the team into three different groups. 
• Parsing – First, for the LLM to more easily read the PDMR’s the files needed to be more 

standardized. 
• Database – Next, the PDMR’s need to be stored in a data so the LLM could easily search 

for relevant PDMR’s needed for the response. 
• LLM – The LLM itself needed to be engineered in a way that it would look for not only 

the correct treatment but the most recent one. 

Our Plan

Research Into The Project Parsing Team:
• After handling text 

extraction from PDMRs 
with Computer Vision, 
we clean it up and 
separate the paragraphs

• Trained the learning 
algorithm of ChatGPT to 
build accuracy

• Used a pipeline into 
ChatGPT from Python to 
handle different table 
formats in PDMRs

Storing The PDMR’s
The best form for storing the CSV files was on a vector database. 
Which would allow the LLM to more easily find relevant files to any 
question. This was done through a myriad of tools. 
• Docker 
• VS Code.
• Milvus
The first step was to code a vector database. Then to encode the data 
into the database. The final step was to create indicator’s allowing for 
files to be queried faster. 

Training the LLM
After much deliberation between open-source or closed-source, we 
eventually choose an open-source because of the reduced cost. 
• The LLM that we settled with was lama 3.2. We were able to 

more easily prompt engineer the LLM by using Ollama to run it 
without many limits. 

• To decrease the amount of time it takes the LLM to respond we 
had Purdue’s Anvil host the Ollama where we could import our 
desired LLM.  

Database Team: 
• To improve LLM 

performance, 
we created a vector 
database for retrieval 
augmented-generation 
(RAG) 

• Hosted the vector and 
SQL database of 
PDMR's on Docker 
and Milvus as backend

• Training LLM using 
unsupervised learning 
on vector database 

• Establishing public 
hosting on Anvil for 
easy connection/ setup
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• The most pressing goal would be continuing to improve the way the 
PDMR’s can be parsed in a more efficient method, handling edge cases such 
as tables spanning multiple pages, or non-standardized formats.

• Prompt engineer the LLM to give better responses and reduce the chance 
that the LLM gives a false response or hallucinates.

• Generalize the solution to account for other types of PDMRs, not just 
turfgrass.

• Fine-tune response times by resolving bottlenecks in processing and 
inference.

• Enable LLM to help perform data analysis and other tasks on the PDMRs as 
directed by the user.

• We were able to increase much in the two semesters that we worked on this 
project. Finding the many different challenges working with  LLM’s. 

• There are many different solutions to the problems that we faced. Leading 
multiple branched methods of parsing, storing, and  reading through the 
LLM. 

• However, in the end we were able to successfully parse the PDMR’s into 
readable CSV files. Also being able to import them into a vector datable 
using Milvus. With the final out from the LLM at least being more capable 
compared to the previous version. 

References

User Interface

2

1 3LLM Team:
• Used database to 

query the LLM using 
RAG.

• Fine-tuning and 
prompt engineering 
to ensure correct 
output.

• Researched state of 
the art methods to 
handle tabular data as 
well as textual data.

• Conducted 
exhaustive testing 
with a set question 
bank in order to 
verify outputs 

• Created user interface 
(UI) using pre-existing 
tooling in order to 
achieve professional 
results akin to the 
DeepSeek or ChatGPT 
interface.

• Utilized tools such as 
AI-SDK along with 
Vercel in order to 
simplify and speed up 
deployment process, 
while also enabling 
easy switching of 
LLMs if necessary.
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