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The Purpose of this Project
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This project aims to create a learned language model (LLM) to optimize the search for Tothased «+  Created user interface We were able to increase much in the two semesters that we worked on this
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* By creating an LLM with the ability to search through PDMR's and create a database of : . T DeepSeek or ChatGPT *  However, in the end we were able to successfully parse the PDMR’s into
\ the information, we improve the accessibility of the information for stakeholders. ) : : i interface. readable CSV files. Also being able to import them into a vector datable
' i L H «  Utilized tools such as using Milvus. With the final out from the LLM at least being more capable
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To increase the ability for an LLM to properly read the PDMR’s so it can give accurate

responses we split the team into three different groups.

* Parsing — First, for the LLM to more easily read the PDMR’s the files needed to be more
standardized.

» Database — Next, the PDMR’s need to be stored in a data so the LLM could easily search
for relevant PDMR’s needed for the response.

¢ LLM - The LLM itself needed to be engineered in a way that it would look for not only

simplify and speed up

deployment process, ﬂ‘utu re Goals \
while also enabling

easy switching of * The most pressing goal would be continuing to improve the way the

LLMs if necessary. PDMR’s can be parsed in a more efficient method, handling edge cases such
as tables spanning multiple pages, or non-standardized formats.

\ ) *  Prompt engineer the LLM to give better responses and reduce the chance
the correct treatment but the most recent one. that the LLM gives a false response or hallucinates.
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Used database to  Fine-tune response times by resolving bottlenecks in processing and
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