The Data Mine

Purpose & Background

Managing player incentives is crucial for the Cubs' front office to stay under the luxury tax threshold.

PURDUE

UNIVERSITY

- In 2023, Cody Bellinger's Comeback Player of the Year win triggered a \$1M bonus, highlighting the need for better financial planning.
- This project builds a machine learning model to predict award winners, using player stats and historical trends
- Accurate predictions help optimize payroll decisions and maintain a competitive roster
- By leveraging data-driven insights, the Cubs can make smarter contract offers and allocate resources.

Data

Data Processing

- Extracted data from SQL and converted it to CSV files.
- Imported batting, fielding, and pitching data for analysis.
- Encoded award names as binary values for logistic regression.
- Normalized batting stats by dividing by plate appearances.

Key Attributes

- Primary Key: player id (Unique identifier for each player)

Main Variables Used:

- WAR (Wins Above Replacement) Measures overall player value.
- Batting Average per Inning Evaluates a hitter's efficiency.
- ERA (Earned Runs per Inning) Assesses a pitcher's performance.

Target Variable

- Votes: Number of votes received for an award.
- Award name: Binary to indicate whether a player won an award.

AL Felix esults Bautista Chris Martin R Kyle Bradish V atu J K per Inning 0 - - Logistic Calibration XGBoost Calibration Perfect Calibration 0 aris \bigcirc Ξ 0

XGBoost Pipeline

Chicago Cubs – Baseball Analytics

Patrick Isom, Ram Muthurangan, Anvith Chigurupati, Jobe Holderread, Grant Johnson, Colin Robinson, Ananya Bhumireddy, Atul Narahari, Calester Rem, Sairah Ghule, Sujay Kodam, Michael Wolf

Logistic Regression

XGBoost

Calibration Plot

- Compares observed values of probabilities versus perfect frequency
- Used to see effectiveness of model Analysis
- Log. Reg. predicts low for lower chances of winning an award
- XGBoost predicts lower for higher chances
- Both are close to perfect line, XGBoost
- moves closer to perfect as time goes on Overall, XGBoost is better predictor

Comparison

Importance Values

- Log. Reg: coefficient associated, how much that feature implies
- XGBoost: model gain per feature **Feature Selection**
- Log. Reg.: hand-picked features, not all useful XGBoost: chosen by algorithm, selects most
- important by gain **Comparison**
- Some similar features (wins, era)
- More value lent to wins and strikeouts in XGBoost

Overall Results

- Log. Reg.: 1/6 on 2023 Cy Young Winners - XGBoost: 3/6 on 2023 Cy Young Winners
- Which to choose?
- Based off results, XGBoost predicts better
- XGBoost is faster

AFTER

- Grouped code functions for easy cleaning and model creation
- Standardized cleaning for all data
- One function to run for training and testing models
- Functions for each team located in one file

Extra Features for Model:

Improve Player Predictiveness:

performance

The Data Mine Corporate Partners Symposium 2025

Future Goals

Interface for Cubs Model:

Create customizations for different models and better usability

Experiment with clutch performance metric, injury history impact, and etc

Complement XGBoost and capture more complex patterns in player

Logistic Regression

Purpose

- Help users predict through binary classification. **Results**
- Results are very understandable for stakeholders to understand the most significant attributes.

Use Cases

- These models perform very well on small to medium datasets with well-defined categories of data.
- The predictive power of the logistic regression can help users analyze historical data on player performance and model statistical probabilities.

XGBoost

Decision Trees

- Builds and tests many decision trees
- Finds features in data to split on
- Splits on that feature, retests to find new split
- Each tree is tested and an improved tree is created based
- on the results (Gradient Boosting)

<u>Uses</u>

- Binary (ex. Win/Loss)
- Classification (top 10, top 5, etc.)
- Suited for large datasets
- Black box model

Comparison

Switched from logistic regression to XGBoost and saw the **Following improvements:**

Enhanced Accuracy

Gradient boosting refines predictions by combining multiple weak models.

Efficiency

Better handling of large datasets, making it suitable for more complex tasks.

Summary

Logistic Regression & XGBoost

- Integrated XGBoost models over original logistic regressions
- Significantly improved model efficiency and accuracy **<u>Pipeline</u>**
- Optimized the pipeline by streamlining code and standardizing processes.

Proof of Concept

Learned what awards can be modeled for the Cubs to improve upon our work

Acknowledgements

Jeremy Frank & The Chicago Cubs The Data Mine Staff: Jessica Gerlach, Ashley Arroyo