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Introduction Exploratory Data Analysis -Market Segments 1 and 2

During the time with BASF, we evaluated
different market segments within different
geographical regions to determine how variables
such as weather impactthe transactional

data. Our approachto the project was to find
trends and anomalies and put them into the real-
world context so that the transactional data can
be predictedin a more optimal way.

Data Collection : We collected weather and transactional data for specific regions to determine whether certain weather conditions have an impact on market trends.
Data Preprocessing : Data was aggregated for proper time series analyses. Subsequently, there was a visual inspection of the data and statistical tests to support the identification and confirmation of any anomalies or trends.

Model Selection and Evaluation : After selecting an appropriate time series model based on the data characteristics, we proceed to evaluate the model’s performance on the testing set using PyCaret.
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According to the forecast error, this combination of variables yielded the lowest error
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Results and Conclusion

weather layers to the existing transactional data, these results inform our approach.
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