

The Data Mine Yamaha - KPVs of Manufacturing Precision Propellers

Aadit Sangwan, Caleb Cox, Dhruv Arora, Josiah Linneman, Kaiden Krenek and Abolee Diwate (TA)

Introduction

About Yamaha: Yamaha Precision Propellers is one of the leading investment casting propeller manufacturers in the United States.

Problem: The company aims at reducing the amount of product scraped to less than 2%. The successful to defective pour ratio at the start of the project was too high, due to investment casting being a tedious process with multiple variable factors.

Motivation: To create a data prediction model that would evaluate the data and predict which factors lead to a failed pour.

Goal: To clean the dataset and identify key factors impacting scrap production.

Project Workflow

Decision Tree Approach

struggled to find enough training data points.

Prediction Model Approach

MLP Classifier Model:

- Model based on a neural network that predicts qualitative labels using features that are both qualitative and quantitative features.
- Manipulates the weights toward features to find the best prediction routes.

Findings

 Implemented random forest algorithm multiple times and established permutation importance on the model.

Weight	Feature	Weight	Feature
0.0111 ± 0.0127	PourCompleteDelay	0.0240 ± 0.0046	PourAngle
0.0031 ± 0.0039	Oven CNT	0.0086 ± 0.0072	Oven_CNT
0.0012 ± 0.0030	VIP Power Setting	0.0080 ± 0.0083	PourDelay
0.0012 ± 0.0030	TiltTime	0.0080 ± 0.0074	TiltTime
0.0006 ± 0.0025	PourAreaTemp	0.0074 ± 0.0030	Gripper_Position
0.0006 ± 0.0025	PourAngle	0.0068 ± 0.0090	PourCompleteDelay
000000 ± 00000	DoorOpenTime	0.0062 ± 0.0055	HeraeusEast Temp
0 ± 0.0000	Cure Time	0.0062 ± 0.0000	SQL Index
0 ± 0.0000	Pour ID	0.0055 ± 0.0060	Unnamed: 0
0 ± 0.0000	HeraeusWest Temp	0.0043 ± 0.0063	Cure Time
		0.0043 ± 0.0030	DoorOpenTime
0 ± 0.0000 0 ± 0.0000	SQL_Index	0.0037 ± 0.0072	TotalTimeInOven
	OperatorJTM	0.0037 ± 0.0119	PourAreaTemp
0 ± 0.0000	DripTime	0.0031 ± 0.0000	Gripper Torque
0.00000 ± 0	OvenTempAtPick	0.0025 ± 0.0046	OvenTempAtPick
0 ± 0.0000	StreamCNT	0.0025 ± 0.0025	Part Height
0 ± 0.0000	TrayPos	0.0025 ± 0.0025	Shift-1
0 ± 0.0000	Gripper_Position	0.0025 ± 0.0025	Dew Point (*F)
0 ± 0.0000	PourBatchNum	0.0018 ± 0.0030	TrayPos
0 ± 0.0000	TotalTimeIn/Oven	0.0018 ± 0.0030	VIP Power Setting
0 ± 0.0000	HeraeusEast_Temp		more
26 more			Z ZONAT B. TAL.

The most weighted features from running the random forest algorithm are PourComplete Oven CNT, Tiltime, PourAngle, PourDelay, PourAreaTemp

Conclusion

There was **no singular factor** that led to a failed pour.

The main processing factors that led to a failed pour are; (Put this in later).

Identifying Operator error has reduced scrap production by ~8%

Future Scope

Use tenser flow to re-create the prediction model

Identify additional parameters that could be affecting the scrap production

Provide Yamaha engineering with the tools and training documentation

Acknowledgement and References

- Thank You to the Yamaha Team for their continuous support.
- The creators of all the different data analytics tools that were used.
- The Data Mine team for their guidance.

The Data Mine Corporate Partners Symposium 2023