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Supervised learning is the most widely used method of machine learning, where a model is 9‘(')I TQ(') rsoes Fmbedcings | . Self-supervised learning offers many benefits as opposed to conventional
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trained using labeled data. However, labeling data manually is a costly and time-consuming h. «— Representation —» h,; wE d e Soasiont Wi ¥ superwsefj and unsuperw.sed Ieérnlng m.ethods. Self superwse.d Iearnmg features
process, and with the increasing demand for data by neural networks, training them can be Images /" | L | % C o B Z reo!uFed t”T_‘e and.energy Intensive practices common!y found |r.1 supervised
challenging. A new paradigm called self-supervised learning addresses this issue by utilizing ) () X KT~T j"g "._. i . training while hawr\g d bette.r.af:curacy than unsupervised learning. Through these
unlabeled data to obtain meaningful representations that can be used for various learning i e — - methgds and desp.lte some initial challenges, the HERITE havg been able to
tasks. v Bl— || QZBK' Souuure experiment, combine, and apply such models to achieve their results.
Dunng the DFEVIOUS Semester, we StUd|ed advanCEd SEIf'SuperV|Sed mOdE|S ||ke S|mCLR (a - Er-wcoder Projeéto; AS the technology developsl Self_superV|Sed |earn|ng may rlval Superv|sed |earn|ng
Simple framework for Contrastive Learning) and Barlow Twins. The project this semester is in accuracy at a fraction of the cost, thus becoming the new gold standard for
an exploration into self-supervised learning and its applications. future machine learning models.

Architecture of SImCLR Architecture of Barlow Twins
BioCLR maximize agreement i Using Self-Supervised Learning to Classify Land Use in Satellite Imagery
Inspired by the neuroscience findings that the brain 20 20) Ensembling Machine Learning Models for Improved Predictive In this semester-long project, the team has analyzed data input from maps and from
processes visual information in multiple . e | Perf satellite imagery to classify the land use in the image using self-supervised learning. The
segregated pathways, we designed a new self-supervised N N erformance main goal is to input an entirely blank map and run it through a model to classify the land
contrastive learning model based on SimCLR. Our model is 1 () _ _ _ _ _ . use of the images into separate categories, of which could include urban landscapes, forest,
called BioCLR (Biological Contrastive Learning) and is more | _ | | This project aims to create a new model by ensembling two self-supervised learning oceans, desert, and farmland.
i« ifferent neural representations > A 2 C
biologically plausible than the original SimCLR model. ) ¢ ) models together. This new model would have a better Top 5% accuracy than either of |
its base models and be better than the top 5% accuracy of some supervised learning Right: The goal of the model
vistalfased Visual Task 2 models is to accept the input image

MethOdOIOgy: e.g. object recognition @ e.g. object orientation : such as the image on the left

*Used supervised learning to train ventral and dorsal visual _ . e And return the map such as

pathways in Google Colab with Cifar 10 dataset Above: Arcitecure ofioCLR model | | Methodology: Tneone onth ightwih

*Produced different neural representations of the same * We generate an input tensor for the

images using two artificial pathways connected layers by appending the Methodology:

.Replaced the data augmentatiOn part in SimCLR With the 23;825_ SimClr penU|timate representation Of eaCh .The model Wi” Comprise mostly Of image Segmentation Of the map’ Which Wi” break down

neural representations prOdUCEd by the tWO pathways éS0.0- T La%’er Lager Last mOdEL SimCLR and BarIOW TWinS. the image into Separate regions Of Which the properties are the Same.

*Provided extracted neural activities from the two o I 2 * He connected Layer uses a cross- *These regions will be identified using the ultraviolet spectrum of light emitting from the

pathways as inputs to BioCLR Barlow entropy loss function to train. ground. §15 Scattarnlol of Estegories|h the KEB Scale

) _ * The connected Layer is a.Iso modular *As part of pretraining process, a dictionary of ¢ Bl
ReSUItS: Testing Accuracy ofpsupervised model and BioCLR with 2000 training samples to the number Of nOdeS In eaCh Categories and thEir respeCtive C|USter Centers s f?reSt
*BioCLR achieved 72% testing accuracy with 50000 training ** | | Layer, to allow adapting to different will be accessed by a U-Net Model to then cross- ] o f 200
| d 55% testi ith 2000 traini 575 Above: Stacking Model representation - T t sl . . . _ 7 - &

Samp es an 0 eS Ing accuracy Wi ralnlng » —_ a ase S an |npU mO e S. reference any Input Images Wlth those Categorles = ’{ 1252

samples _ . . £ 55 *Will be trained on the classifiers using a dataset {""f 1;%0 -

*Supervised model achieved 79% testing accuracy with - e We combined the results of provided by a study conducted by the UC - 25

50000 training samples and 49% testing accuracy with oo | [teaming | [ ] multiple models into a generalized Merced Research Laboratory. 200

2000 training samples result by decreasing the model’s | | ) 125 Q0
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*However, the testing accuracy of BioCLR was the same Training | | Bootstrap | | teaming | [ o Combined variance maps for each class R e

40.0 : : Data I~ | Sample2 [~ | Algorithm Classifier - - 150

with or without contrastive learning. It indicates that » Used bootstrapped datasets to train €d 200 2

contrastive learning was not contributing to the Abozﬁi Srov?glggfissnBoiZ ?E;lts of ] oo || Leaming | ociiers || | prctcion the SimCLR and Barlow Twins i summation (skip connection) Above: 3D scatterplot of categories found

performance Of BiOCLR' BiOCLR performed bEtter With Testing Accuracy of BiolzLR with orwithout;on.trastive learning (2000 training samples) mOdels and then Combined the ! ; n the RGB SpeCtrum

smaller dataset might be because its pathways were probability distribution given by | ﬂg [ﬂ conv+rely  Left: Model Architecture of U-Net, which

pretrained. N — == Above: Bagging Model Representation e | Iﬁ@mt__l Nl — : B‘Slﬁ:l involves a series of convolution , ReLU, and

2 qs) £ | (on fd'srrmh (dex :2;2'; path max pooling layers for down-sampling followed
g our final result. by up-convolution to output a segmented image

Possible ways to improve BioCLR:

1. Change upstream tasks or the downstream task. Results: Results:

2. Inc;reasel;che.sue ;)fl;che two ar’FlflcllaI pa-thways ancil( | - - + Focused on the top 5% accuracy when applying each of the ensemble methods -Thelchéng|ng of the fmal. outpu’;frlor: ha\lnng_? mo:ellwtcjh dlffer.err:t si:fales and. Ialzells to.a
r§ uce the size of the contrastive learning network in ™" 7 e S « Combined a TensorFlow based model and Py-torch based model successfully. simp er. image segmentation mo el that classi .|est e ar\ use with se .-.sup'erwse earning
BioCLR. Above: Comparison of results of BioCLR *Pretrained data of the Satellite Bands and their respective vector classifications

with/without contrastive learning
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