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INTRODUCTION

Motivation: Use existing data to develop tools/models that add value to
Tesla generating leads that help Tesla enhance factory operations.

Goal: Given historical text and reliability data our goal is to create a model
to automate the process of classifying open text maintenance records into
standardized groupings. We also aim to predict future downtime

and identify poor-performing equipment.

DATA PREPROCESSING & EXPLORATION

NaN removal, cleaning, formatting, stopword
removal, vectorization.

Remove dispatches with
NULL values

' [X, 2021-10-12 19:24:14.97] Observation: A,
l [Y, 2021-10-12 19:38:54.933] Observation: Text., [Y, 2021-10-
12 19:39:00.353] Action Taken: Text

Clean the text to remove
filler words, timestamps,
punctuation.

l ‘failure.mechanical’; O, 'failure.material’: 1, ...

S s S T T RTP — Return to Procﬁucnon, PM = Preventative Measures,
names. HMI| — Human Machine Intervention

l Removed words like “a, an, the, and, it for, or, but, ... "

Replaced abbreviations

Integer Encodings:

Text—[ 61, 73, 87,102, 201, 194, 81, 150, 18, 124, 287, 3, 24,

l 48,206, 2,321, 0, 0, 0, O]
Sparse Vectorization:
Text-[0,0,1,0,0,1,0,0......... .1,6.0,1,0..... ]

Removed stopwords,
lemmatization

l ~ Clustering

We used distance-based KMeans clustering to analyze the
dispatches and see patterns in words.

Integer Encoding /
Vectorization

Electrical Failure

Instrument Failure Mechanical Failure

validated : :
new alc calibration
broken . bond
currently station
ops fault 0 installed
em
wire

Number of Dispatches

ADASYN

ADASYN was applied to handle class
iImbalance and generate synthetic vectors
for the minority classes using weighted
distribution. These vectors balance the
dataset, resulting in improved performance
for the classification of the minority classes.

NATURAL LANGUAGE PROCESSING

We trained, evaluated, and compared models using Dense Neural Network and
Multinomial Naive Bayes to classify the dispatch data with high accuracy using
the semi-supervised approach.
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PREDICTION METHODS

Detect anomalies within the battery production data and predict when
and what type of failures will occur in each hour.
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PREDICTION PROCESS & RESULTS

Data cleaning process:
1.Delete the missing values 2.Normalize data
— e — e T 3.Parse time stamp
Detrend the data: Used regression and
I smoothing to remove the cyclical
component. Feature engineering:
We implemented a rolling average

and moving standard deviation.

Time-series forecasting:

The trend line represents the residual plot
for the Autosale ARIMA

Input: timestamps, num of items
produced per hour.

Output: predicted num of items next hour
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Resdual Plot for AUTTOSALEMCPI
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Binary Classification:
To determine the
—wssss—  threshold for failure of
,//—* ey a production line.
| Stacked Random
A Forest, Logistic
/ o Regression: To
- BaS ' y, train model
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FUTURE WORK

NLP: 1. Fine tune the models by changing and testing with different hyperparameters and
sampling techniques. 2. Update the models so that it classifies the dispatches into sub-
categories for each failure group.

Prediction: 1. Update the logic for pretraining process of input data of LSTM model to the
machine level. 2. Incorporate the results from the NLP analysis, refine the provided failure
data and update the prediction model increasing granularity down to the part/component
level.
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