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o Creating such novel molecules is expensive in terms of time and cost, so o Using RDKit, we can represent a molecule in different S O— \
re;earchgrs have fqund ways to automate part of the search process ways, depending on the context. (00 0. 0. 0. 0. 1 0. 0. 1. 0. 0. 0. ) o C:12 CsH10N202
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Figure 1: Different Nis\c;/ C:0
encodings. representations of a O C-13/ \i
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Traditional use of Reinforcement Learning

Figure 2: A molecular generation
model can be trained to explore ] / Subgraphs: Trees and Motifs
the chemical space via a Advantages of Graph Representation 0
sequence of actions, iteratively % 0
adding and removing bonds and ) Q \ - 4 o When several data pointsin a training set of
() atoms. Adopting a molecular graph representation offers the o 07 '\ molecules exhibit frequently occurring
- o possibility to: subst_ructu res, we may have a reinforcement

Addition At (_aach step, a reward Is given, learning algorithm rely on larger molecular
weighted based on when in the o Include 3D features, such as distance between substructures consisting of groups of atoms,
process the action is taken: atoms: rather than single atoms or bonds.
exploration is encouraged in the 0

S— earlier stages of training, o Attach a feature vector to each node and edge, Q Z o Such molecular substructures are called junction
2ond exploitation is encouraged after characterizing node type (ex: C, O, N...) and edge type \ trees or motifs.
Aagien some knowledge has been (ex: single, doble, aromatic...);
acquired. o Main advantage: better reconstructions of larger
o Rely on GNNs (graph neural networks) for compounds (ex: polymers).
Bond Learning happens through model training;
Removal the optimization of the
cumulative reward. o Measure molecular similarity more accurately than
what can be computed from strings; \
It is possible to design the reward Possible Future Developments
to obtain optimization of o Make use of graph substructures to encode
/ predetermined molecular reinforcement learning actions, resulting in more o Combine current work with multi-objective
properties. accurate molecular reaction encoding and in the optimization to achieve simultaneous control of
ability to deal with larger chemical compounds than Figure 3: A molecular graph and its competing molecular properties.

Such a model can be those that can be handled with string encodings. junction tree representation
implemented relying on a SMILES
string representation. K
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