

Modular Annotation for
Natural Language
Processing Diego Montes | Bengisu Cuneyit | Jisoo Kim |

Shreyas Chickerur | Sahithi Tummala | Saimonish Tunguturu

 Data Annotation for Contemporary ML Challenges

Annotating Workflow

Question-Answer Systems, Classification, and SQL Annotators

Postgres Stores
Annotation

Server-side
Validation

User Uploads
Database File

User Executes SQL Queries
& Inputs NL Questions

Client-side Table Rendering
& Live SQL Editor

Validation
Errors

Generic Annotation Workflow
1. The end-user uploads a supported file type (.db, .csv, .txt, .md) directly to the annotator or

pulls a previously uploaded file from a project.
2. The user creates an annotation, specific to the annotator being used:

a. For QAS, the user writes a natural-language question and selects an answer span.
b. For SQL Annotations, the user writes a NL question and a corresponding SQL query.
c. For Classification, the user drags labels onto table rows, classifying them into categories.

3. The annotation is sent to Django for additional validation and bleaching.
4. The annotation is saved to Postgres and project statistics are updated .

Classification Tool Motivation
1. Classification of natural language (NL) is

not always on a document-by-document
basis: text data can be found in tables as
well

a. The tool should include an annotator
that can classify rows of tabular data
into a distinct categorical column.

b. Users should be able to make and
search for class labels.

c. Annotating a given row should be as
easy as possible.

Project Management
1. Organization of data annotations becomes increasingly important as annotation

projects get larger, this calls for:
a. Store and retrieve functionality for data and annotations.
b. Project and task structure to distribute annotation workload.
c. Workflows to push annotations to other storages automatically.

A project is composed of a
group of members and data Workflows periodically push

annotations to the cloud

Annotations are stored
in our Postgres Cluster

Team members annotate
different types of data

Team members
validate each other’s

annotations
Annotations further

populate tools

Annotation Pipeline
1. A user creates a project, inviting other members if

necessary.
2. Any team member uploads data belonging to the

supported formats.
a. Tasks are automatically created and divided

among team members.
3. As annotations are created, project statistics are

updated and at any point all annotations for a
project can be downloaded.

4. Optionally, annotations can be periodically sent to
an AWS or GCP storage.

Inspiration
1. Data is the backbone of machine learning models, yet real-world data is messy: data

annotations format this data in a way that a model can learn from.
2. In the past, we had used and attempted to extend an open-source annotation tool:

cdQA-annotator; however, there were a number of pitfalls:
a. No centralized storage: annotators had to manually download annotations after

each annotation session and upload them to Sharepoint.
b. Difficult to implement new features: the tool was no longer maintained, and the

code base’s infrastructure did not support pluggable features.
c. A lack of a project structure and workflow.

3. As such, our project’s specifications revolved around these three missing features.

User interacts with UI to ask NL
question - UI visualizes query

results

Neural Translator translates NL
question to valid SQL query

Database returns query results

Why Another Annotation Tool?
1. Distinct from many open-source annotators, a priority was making

our annotator pluggable for future tools and software contributors.

2. Similarly, despite a number of paid annotation tool services that
offer the features we were looking for, we wanted to create a tool
that could annotate data for the newest ML/AI challenges:

a. One such example is NL2SQL: no annotation service offers a
tool for natural language to SQL annotations (depicted in the
diagram below)

Conclusions & Future Goals References & Acknowledgments
Conclusions:

● The learning curve for a full stack of technologies was larger than initially
anticipated:

○ The MAT has distinct 8 microservices in its stack.
● Development time for seemingly small features increases drastically as they

need to be integrated with existing features.
● Necessity of a separation between frontend and backend.

Future Technical Goals:
● Create better collaboration between the frontend design and the backend logic

by using a REST or GraphQL Framework.
○ Similarly, improve frontend design development by using React or

another Javascript framework versus Vanilla Javascript.
● Add more annotation tools to the MAT suite

○ Multiple choice image labeling
○ Audio transcriptions
○ Named entity labeling

● Implement integrations with other data services, such as Pure Storage.

References:
● Django (Version 1.5) [Computer Software]. (2013). Retrieved from

https://djangoproject.com.
● Merkel, D. (2014). Docker: lightweight linux containers for consistent

development and deployment. Linux Journal, 2014(239), 2.
● Bootstrap (Version 4.6) [Computer Software]. (2021). Retrieved from

https://getbootstrap.com/

Acknowledgments:
● We would like to thank our:

○ Corporate Partner Mentors: Sarah Rodenbeck and Justin Gould
○ Student Mentor: Rishabh Rajesh
○ And the entire Ford team for giving us this opportunity, letting us access

their internal data and systems, and guiding us as we created and
refined this project.

● We would also like to thank: Dr. Mark Daniel Ward, Ellen Gundlach, and Maggie
Ann Betz for supporting us during the Academic Year and providing us with the
resources for the successful completion of our project.

An Example Translation Data Annotation:
● The top portion displays the text

to-be-translated.
● The bottom portion shows the translated

text, annotated for errors.

Technology Stack

A Sample Annotation from the
Question-Answer Annotator

Classification Annotator Table
View

Database & Cache:
● PostgreSQL stores annotations,

projects, tasks, and workflow data.
● Redis caches frequently visited

projects to allow for faster access.

Background Tasks:
● Celery workers update project

statistics and process uploaded data
without causing longer page-loading
time.

Backend:
● Django process incoming requests by querying

the database and running view-specific logic.
● Node.js builds frontend dependencies, including

compression and concatenation.

Containerization:
● Docker Compose runs all the Docker containers locally.
● K8’s manages the scaling and deployment of these

containers in production.

Reverse Proxy and Load Balancer:
● Traefik dynamically updates routes to

the annotor microservice.

Frontend:
● A combination of Bootstrap4, Vanilla

Javascript, Jquery, and various other
libraries create an interactive UI.

SQL Annotator
Workflow

