1. INTRODUCTION

Our Project: We are tasked by Webee to analyze sensor data from Webee's rotating machinery to provide predictive maintenance for Webee customers.

What is Webee? Webee is a company that provides industrial companies with solutions for predictive maintenance.

The Goal: We need to build our own dataset for anomaly detection.

2. BACKGROUND

IOT Sensors

We use IoT sensors to collect real-time data, and most importantly the acceleration, temperature, and rotation of any given motor-driven machine. (picture)

Dataset Limitations

The datasets we use have many missing values and no specific time when a given machine is up and running. As such, many of the values shown are "estimated" (explained in section below).

Operating Conditions

Our team is based mainly on a group of machines data all within the same vicinity. As such, a given machine is not impacted by the noise from other machines.

3. RESEARCH METHODOLOGY

Our Pipeline Workflow:

A - Raw Data Set

- From raw CSV data:
 1. (E.g.) columns
 2. (E.g.) data based on time stamp
 3. (E.g.) calculate RMS values of velocity and acceleration

B - Pre-processing & Variables

- Reduce Columns
- Process data and time stamps
- Pair data based on time interval
- Calculate RMS values of velocity and acceleration

C - Data Imputation

- Fill missing velocity data on linear regression of acceleration data
- Fill missing temperature data based on interpolation

D - GMM On/Off Subset

- Velocity data follows a bi-modal distribution corresponding to when the machine is "on" and "off"
- Use Gaussian Mixture Model to determine a threshold value that splits the data into 2 subsets
- Use SVM for further analysis

E - Feature Creation

- Extract meaningful information from velocity and temperature data in training new features for the model
- Moving averages of velocity and temperature data
- Both X, Y, and Z
- YZ plane and RMS values
- Correlation
- Time of day
- E: Time between last data point

F & H - Anomaly Detection

Anomaly Detection

- Runs 2 anomaly detection algorithms and identifies anomaly based on thresholds. Data is trained for a given day based on training data of past 60 days
- Mahalanobis Distance Detection - Detects changes in the distribution of data relative to the distribution of data from previous days.
- Mahalanobis Distance Detection - Compares MD between data points to detect anomalies. If a data point exceeds the threshold, it is detected.
- Anomaly Score Chart - Weighted approach that considers anomalies detected in both algorithms.

4. CONCLUSIONS

Total Pipeline Progress

5. FUTURE GOALS

- Integrating Model to Webee's Software
 - To allow Webee's software to be used by a client by leveraging Webee's algorithm.
 - On-line Testing and Validation of Model
 - Compare the performance of the model with the actual data in real-time.

6. REFERENCES & ACKNOWLEDGEMENTS

- David Glass, Kail Lacy, and Shennhau Chang for guiding us
- Our CRP TA Luke Folket
- Dakot Morgan, Lucas Funes, and Daro Farfan from the Webee team

Links: