Introduction and Motivation

What We Do: We examine flight trajectories and paths of airplanes to find patterns,

Distance Geometry

groupings, and outliers.

Distance geometry calculates the length of the trajectory along increasingly short segments. Include all the segment lengths up to a certain depth in a single feature vector. An example is given for the given trajectory (shown in black) and going to a depth of 3 . See Figure 2 for a visual of the segmentation of the trajectory. Figure 3 shows the corresponding positions of each segment within the eature vector

Figure 3 Resulting Feature Vector

Example of Normalized Vector
$[0.5,0.234,0.7,0.98,0.1,0.4]$
Figure 4: Normalized Feature Vector

Clustering

- Once we have successfully created our feature vectors containing the desired trajectory characteristics, then we can use clustering to filter out the vectors with uninteresting attributes
- This is incredibly useful for finding specific patterns, unusual shapes, and abnormalities!
- You can then use clustering to group feature vectors together based on whatever you choose and then you can visually display them to see the similarities of the flight paths contained within the different cluster groups. See Figure 5 above.

Conclusion:

We have worked towards the ability to extract interesting information from trajectories using Trackable and applying distance geometry.

Future Goals:

- Onboard new members
- Use these tools to predict the future characteristics of trajectories
- Explore unanswered questions about trajectory characterization and look for correlations between different characteristics

Acknowledgements:

A special thanks to Dr. Mark Daniel Ward, Margaret Ann Betz, Ellen Gundlach, and the rest of the Data Mine staff for providing us with continuous support, and to our Sandia mentors and partners: Dr. Katrina Ward, Dr. Andrew Wilson, Dr. Mark Daniel Rintoul, and Dr. Kamlesh Patel.

