

GOAI

DATA

BACKGROUND

The Data Mine

Predictive Modeling of Turbofan Engines

Luke Auslender, Pete Dragnev, Madeline Emenhiser, Christian Fils-Aime, Gabrielle Faulcon, Leonardo Nikollaj, Mukuntha Prabakar, Ivan Shouldice, Ella Smith, Prasanna Suresh, Marlon Valverde Suazo

- Predict remaining useful life (RUL) of engines
 - RUL indicates when a component requires repair or replacement and measures time until failure
- By accurately predicting RUL, Raytheon can proactively schedule maintenance and reduce any costs associated with repairs and unnecessary servicing

Dataset	Train	Test	Condition	Fault Mode	
1	100	100	Sea Level	HPC Degradation	
2	260	259	Above Sea Level	HPC Degradation	
3	100	100	Sea Level	HPC and Fan Degradation	
4	248	249	Above Sea Level	HPC and Fan Degradation	

• Four simulated NASA datasets of engine sensors over time • Multiple multivariate time series

- 3 operational settings and 21 sensors
- Include temperature, rotation speed, pressure, etc.
- Calculated RUL using cycle

 \bigcirc RMAN RFO БП MODE

- Methods used to measure variable importance and understand engine component breakdown or failure indication included:
 - Principal Component Analysis (last 5 cycles and last 120 cycles)
 - Lasso Regression
 - Tree-Based Methods (random forest, gradient boost, and extreme gradient boost)
- The most important engine components across all six techniques were: HPC, LPT, Fuel, and Core Nozzle

Engine Component Importance According to Number of Methods						
# of Methods	Dataset 1	Dataset 2	Dataset 3	Dataset 4		
6	HPC • Fuel • Core Nozzle	HPC • LPT	HPC • Fuel • Core Nozzle	HPC • LPT		
5	LPT	Fuel	LPT	Bypass Path		
4	Bypass Nozzle	Fan • Bypass Nozzle	Fan	Inlet ● Fan ● Fuel		
3		Inlet • Bypass Path • LPC • Core Nozzle		Bypass Nozzle Core Nozzle		
2	HPT	HPT	Inlet • Bypass Nozzle • HPT	HPT		
1	Fan	Burner	Bypass Path LPC	LPC • Burner		

HPC: High Pressure Compressor, LPC: Low Pressure Compressor, HPT: High Pressure Turbine, LPT: Low Pressure Turbine

Predictions

- Each cell of the grid above shows the predicted RUL versus actual RUL • Points above the line were predicted successfully
 - The Survival Analysis model using the PCA120 variables performed the best out of the survival analysis models
 - The XGBoost model performed the best out of the gradient boost models The Gradient Boost model follows the line but overpredicts RUL

- Results of our exploratory analysis:
 - All engines can be assigned to the correct dataset using predictions from a classification tree
 - This means the best performing model may be selected given an engine with unknown conditions
 - The Tree methods performed the best under all conditions
- Deliverable:
 - A graphical user interface (GUI), allowing users to compare different results across model types and datasets
- Limitations:
 - Simulated data
 - Lack of information surrounding the engine data
 - Time, as our project was confined to Spring 2024
- Create a regular maintenance schedule based on predictions and actual failure rates
- Optimize batching of engines • How many should be kept in reserve based on failure rates?
- Determine which engine components appear to be failing first based on the sensors
- Investigate what makes certain engines more difficult to predict

ACKNOWLEDGEMENTS

Thank you to the Data Mine and our Raytheon corporate partners for this opportunity!

The Data Mine Corporate Partners Symposium 2024

S

4

C

C

UTURE