Predictive Modeling of Turbofan Engines

METHODOLOGY

• Predict remaining useful life (RUL) of engines
 ○ RUL indicates when a component requires repair or replacement and measures time until failure
 ○ By accurately predicting RUL, Raytheon can proactively schedule maintenance and reduce any costs associated with repairs and unnecessary servicing

DATA

• Four simulated NASA datasets of engine sensors over time
 ○ Multiple multivariate time series
 ◦ 3 operational settings and 21 sensors
 ◦ Include temperature, rotation speed, pressure, etc.
 ○ Calculated RUL using cycle

PREPARING DATA

• Calculated RUL using Cycle
• Standardized

MODEL PERFORMANCE

• Methods used to measure variable importance and understand engine component breakdown or failure indication included:
 ◦ Principal Component Analysis (last 5 cycles and last 120 cycles)
 ◦ Lasso Regression
 ◦ Tree-Based Methods (random forest, gradient boost, and extreme gradient boost)
• The most important engine components across all six techniques were: HPC, LPT, Fuel, and Core Nozzle

ENGINE COMPONENT IMPORTANCE ACCORDING TO NUMBER OF METHODS

<table>
<thead>
<tr>
<th># of Methods</th>
<th>Dataset 1</th>
<th>Dataset 2</th>
<th>Dataset 3</th>
<th>Dataset 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>HPC, Fuel, Core Nozzle</td>
<td>LPT, Fuel, LPT</td>
<td>HPC, Fuel, Core Nozzle</td>
<td>HPC, LPT</td>
</tr>
<tr>
<td>5</td>
<td>LPT</td>
<td>Fuel</td>
<td>LPT</td>
<td>Bypass Path</td>
</tr>
<tr>
<td>4</td>
<td>BYPASS Nozzle</td>
<td>Fan, BYPASS Nozzle</td>
<td>Fan, Inlet, Fan, Fuel</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Inlet, BYPASS Path, LPC, Core Nozzle</td>
<td>BYPASS Nozzle, Core Nozzle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>LPT</td>
<td>HPT</td>
<td>Inlet, BYPASS Nozzle, HPT</td>
<td>HPT</td>
</tr>
<tr>
<td>1</td>
<td>Fan</td>
<td>Burner</td>
<td>BYPASS Path, LPC, LPC, Burner</td>
<td></td>
</tr>
</tbody>
</table>

*HPC: High Pressure Compressor, LPC: Low Pressure Compressor, HPT: High Pressure Turbine, LPT: Low Pressure Turbine

ACKNOWLEDGEMENTS