
As part of the Data Analytics sub-team, our goal was to create an initial data analytics report that could be loaded into the database for the customer 

to view. Our goals and requirements were to make a generic report that the customer could access to get a clear overview of the data. With the 

conditions set, we had to use various python libraries such as Pandas, Matplotlib, and Seaborn to analyze, plot, and share data with the customer. 

However, we did not stop there; we went further and created static HTML websites for the simplicity of our customers. The HTML Website does not 

include any code and is a report with various sections of graphs and plots formatted for readability. A new HTML website file is generated and added 

to the database every day. All prior HTML websites are also available within our database. In addition, every HTML website is formatted to include 

the date and report name.

Introduction

Raytheon Team 1

The Data Mine Corporate Partners Symposium 2022

Pierce Warburton, Gahn Mungarndee, Jack Secor, Sharath Jegannathan, Bernie Gandin, Jason Vo, Siddharth Rao, 

Eric Barnfather

API Integration

In order to create a more customer friendly option for the ETL process

we developed a Python Flask web application capable of parsing input files.

This web application allows authorized users to drop data into the database

in a simpler way than through the ETL function. It supports both csv and

.mat files

Behind the scenes the code is identical to the ETL function, this flask app

simply improves the User Experience. Our next steps are to add interactive

bootstrap components such as a toolbar and submission button to make the

application more accessible to the end-user.

The ETL team was focused on creating functions to allow conversions of

raw data to usable formats and eventually loading them to our database. We

incorporated features such as:

- Compatibility with h5, .mat, csv, JSON, and txt files

- Rudimentary error handling

- Automation for ingesting data and generating analytical reports

- Event logs for loading, extracting, and errors

Infrastructure

ETL Function

Database Selection

Data Analysis Report Python Flask App

Anomaly Detection

Our future goals are to focus on improving our anomaly detection by 

evaluating which parts constitute each failure. This would help us evaluate 

which anomalies are more indicative of failures. We also wish to 

incorporate Principal Component Analysis (PCA). PCA reduces the 

dimensionality of datasets and increases interpretability but at the same 

time minimizes information loss. This will help us train the machine 

learning model to predict when an anomaly will occur.

Future Work

Acknowledgments

Our goal was to implement all the pipeline pieces into a cohesive

"enterprise" solution with multiple interfaces to ingest data and

an intuitive dashboard to review the processed data.

• Batch job approach unviable – we needed the ability to host

services (MonogDB, web server) instead of pure computing

• Switched to Docker – an OS-level virtualization platform-as-a-

service solution.

• Ability for web-powered services – currently hosting MongoDB

• Focus shifted from deploying pre-existing artifacts to developing

our own throughout the year.

We explored several different database solutions.

• SQLite –Abandoned for limits of the serverless database file

• Challenging to collaborate on – no user permissions.

• OS file permissions not intuitive for pipeline

• MongoDB – Selected for simplicity and power

• Much more efficient for implementing to pipeline (cloud-

based vs file based)

• Powerful authentication system

• Intuitive API to for easy access when conducting data

analysis

The API team developed interfaces to access weather, regional
power generation, and simulated solar data. These data are sourced

on a weekly schedule to ensure a constant new data source for

analysis. They are automatically ingested into the database.

The overarching aim of this project has been to calculate 

the remaining useful life and predict part failure for a turbofan 

engine. Looking at Nasa Prognostic Turbofan Data and Purdue Solar 

Panel Data we worked to establish a pipeline to ingest, transform, 

and analyze data. The Turbofan data was multiple run to failure tests 

on virtual large aircraft engines while the Solar Panel data was 

simply power output and axillary data from solar panels mounted on 

the roof of KNOY here at Purdue. The work we have completed at 

this point is the ETL process (stands for Extract, Transform, and 

Load), the data lake (where the unaltered data is stored), an initial 

data analytics report, and some anomaly detection although 

incorporating it within the existing pipeline remains firmly in future 

work.

We'd like to thank the good people at Raytheon, specifically our Mentor Mike Douglass, the always helpful Data Mine Staff Dr. Ward, Heather Goodwin, and Maggie Betz, and 

Purdue Professor William Hertz for allowing us to gain access to the Solar Data

Anomaly detection consists of a series of statistical analysis to

calculate and log outliers and anomalies within a raw data signal. We

used a sliding window analysis on the Turbofan Data set from the

NASA Prognostics Repository. We explored using different statistical

moments such as Mean, Variance, Skewness, and Kurtosis. Through

these analyses the team were able to isolate several sensors that show

promise for future Remaining Useful Life calculations, such as

SmFan and Wf.

Infrastructure Solution
Our final product utilized MongoDB hosted on the Geddes cluster with the follow features.

• User authentication

• Easy CRUD and appending functionality

• Synthesis of ETL function and Python Flask App

• Integration of API function and Data Analytics Report

• Five NASA Prognostic datasets

• Including three datasets of the aforementioned Turbofan 

data

Figure 2: Example of the ETL process

Figure 9: Turbofan Skewness Analysis

Figure 1: Net Power Generation for Midwest (EIA)

Figure 3: Static HTML Website

Figure 8: Python Flask App

Figure 5: Seaborn Solar Data PlotFigure 4: Turbofan Engine

Figure 6: MongoDB populated with turbofan data Figure 7: MongoDB populated with solar data


