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Motivation:

• Jobvite’s candidate matching product employs large multivariate normal distributions to predict 

candidates’ fitness for job requisitions as part of a proprietary algorithm called Fuzzy Tags

• The large covariance matrices defining these distributions require 10s of gigabytes of data incurring large 

costs for storage and transmission of these models

• Lossy compression techniques could significantly reduce those costs if model degradation is minimized

Goal: 

• Develop a lossy compression method for covariance matrix from arbitrary multivariate normal 

distribution

• The method should monitor the performance gains as well as the information loss

• The method should maintain the following mathematical properties of the original covariance matrix

• (1) positive definite matrix; (2) original values from diagonal of the covariance matrix

• Algorithms for compression must be reasonably efficient

What it is:

• It is a measure of information loss between probability distributions

How to use:

• The original covariance matrix Σ0 and the compressed one Σ1

represent multivariate normal distributions with zero mean. Their 

rank is denoted by 𝑘. This formula describes their KL divergence:

𝐷𝐾𝐿 = 0.5 × 𝑡𝑟 Σ1
−1Σ0 − 𝑘 + ln det Σ1 − ln det Σ0

Efficient Computation:

• 𝑡𝑟 Σ1
−1Σ0 − 𝑘 = 0 for our compression scheme

• ln det Σ0 is constant for all partitions

• Cholesky decomposition quickly computes ln det Σ1 for partitions

Results: 

• Figure 3 depicts the Kullback-Leibler divergence between the original 

covariance matrix and the compressed covariance matrix. It 

represents the information loss for every possible partitioning

• Figure 4 depicts the Kullback-Leibler divergence per discarded 

element. This is our objective function for partitioning, as it balances 

information loss with compression achieved
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Idea:

• Inducing sparsity in the covariance matrices by forcing independence between groups of random variables

• Clustering variables and forcing independence between clusters induce sparsity suitable for compression

• Figure 1 shows one example of original matrix 𝐾 and compressed matrix 𝐾. By forcing independence 

between variables 𝑥1, 𝑥2, 𝑥3 and 𝑥4, only the off-diagonal elements 𝑎, 𝑏, 𝑐 need to be stored, achieving a 

compression ratio of 50%

Demonstration Data:

• Current data set: a covariance matrix constructed from Stack Overflow questions and their tags

• Matrix size: 256 MB

K : 𝐊 :

Spectral Clustering

What it is:

• A clustering method commonly employed on graph data structures

• It uses the eigenvalues and eigenvectors of the graph Laplacian 

constructed from the covariance matrix

How to use:

• Calculate the Laplacian matrix from the original covariance matrix 

and compute its eigenvalues

• The second smallest eigenvalue is called the Fiedler value and the 

corresponding eigenvector is the Fiedler vector. Fiedler vector is used 

to sort the original covariance matrix

Our enhancements:

• The sorted covariance matrix is partitioned into two components by 

our objective function: Kullback-Leibler divergence per discarded 

element

• Hierarchical clustering is performed and the above process is applied 

recursively for the subclusters

Example:

• Figure 2 presents one example of the matrix structure after 

performing spectral clustering

Conclusion

• Our work proves compression of covariance matrices via clustering 

retains key mathematical properties

• Kullback-Leibler divergence quantifies information loss due to 

compression within the multivariate normal distribution

• Our method quickly computes KL divergence of proposed clusters 

through algebraic simplifications and Cholesky decomposition
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Figure 1: original matrix and compressed matrix

Figure 2: matrix structure after spectral clustering

Figure 3: Kullback-Liebler divergence

Figure 4: Kullback-Liebler divergence per 

discarded element


