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Introduction

Motivation:

* Jobvite’s candidate matching product employs large multivariate normal distributions to predict
candidates’ fitness for job requisitions as part of a proprietary algorithm called Fuzzy Tags

 The large covariance matrices defining these distributions require 10s of gigabytes of data incurring large
costs for storage and transmission of these models

 Lossy compression techniques could significantly reduce those costs if model degradation is minimized

Goal:

 Develop a lossy compression method for covariance matrix from arbitrary multivariate normal
distribution

 The method should monitor the performance gains as well as the information loss

« The method should maintain the following mathematical properties of the original covariance matrix
* (1) positive definite matrix; (2) original values from diagonal of the covariance matrix

 Algorithms for compression must be reasonably efficient

Methodology

Idea:

* Inducing sparsity in the covariance matrices by forcing independence between groups of random variables
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Figure 1: original matrix and compressed matrix
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What it is:

How to use:

element

Example:

Our enhancements:

Spectral Clustering

* A clustering method commonly employed on graph data structures
* It uses the eigenvalues and eigenvectors of the graph Laplacian

constructed from the covariance matrix

« Calculate the Laplacian matrix from the original covariance matrix
and compute its eigenvalues

 The second smallest eigenvalue is called the Fiedler value and the
corresponding eigenvector is the Fiedler vector. Fiedler vector is used

to sort the original covariance matrix

 The sorted covariance matrix is partitioned into two components by

our objective function: Kullback-Leibler divergence per discarded

* Hierarchical clustering is performed and the above process is applied

recursively for the subclusters

* Figure 2 presents one example of the matrix structure after

performing spectral clustering
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Figure 3: Kullback-Liebler divergence

Kullback-Liebler Divergence per Discarded Element

discarded element

Kullback-Leibler divergence

What it is:

* |tis a measure of information loss between probability distributions

How to use:

* The original covariance matrix X, and the compressed one X,
represent multivariate normal distributions with zero mean. Their
rank is denoted by k. This formula describes their KL divergence:

Dy = 0.5 X (tr(Z71%y) — k + In(detX;) — In(det X))

Efficient Computation:

e tr(Z1'z,) — k = 0 for our compression scheme

* In(detZX,) is constant for all partitions

* Cholesky decomposition quickly computes In(det X,) for partitions

Results:

* Figure 3 depicts the Kullback-Leibler divergence between the original
covariance matrix and the compressed covariance matrix. It
represents the information loss for every possible partitioning

* Figure 4 depicts the Kullback-Leibler divergence per discarded
element. This is our objective function for partitioning, as it balances

information loss with compression achieved

* Clustering variables and forcing independence between clusters induce sparsity suitable for compression - - - g 2
 Figure 1 shows one example of original matrix K and compressed matrix K. By forcing independence - o % 521 Conclusion

between variables x,, x,, x3; and x,, only the off-diagonal elements a, b, c heed to be stored, achieving a - . % 2-22 * Our work proves compression of covariance matrices via clustering

compression ratio of 50% P | : g 2-23 M retains key mathematical properties
Demonstration Data: = " _—— % 2% * HKullback-Leibler divergence quantifies information loss due to
* Current data set: a covariance matrix constructed from Stack Overflow questions and their tags Jlesti= — sesdoid . v I é 27% compression within the multivariate normal distribution
« Matrix size: 256 MB | E————— L - - __-‘-l é 22 «  Our method quickly computes KL divergence of proposed clusters
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Figure 2: matrix structure after spectral clustering Figure 4: Kullback-Liebler divergence per
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