Natural Language Processing for Question-Answer Systems

Jack Arnold Prakrit Duangsutha Caleb Berger Rashmi Ananth Jatin Jain

What is NLP?

Basic Concept

- Train a computer to interpret human language
- Represent words as numbers (high dimensional vectors) known as "embeddings"
- Vectors close to each other are interpreted as similar

Common Applications

- Languages translation
- Question Answer (QA) Systems
- Text Prediction

Challenges

- Languages are very ambiguous
- Sentences have more complex meanings

Attention and Transformers

Mimicking Human Approach

- When we (humans) interpret sentences, we focus on the most important words
- Similarly, a model using <u>attention</u> only uses the parts of input where most relevant information is concentrated
- Weights are computed using a <u>neural network</u>

"Attention is All You Need"

- Self-attention is used so a model knows how words relate to one another
- It can keep track of long-term word dependences among sentences

Modern NLP Architecture

BERT

(Bidirectional Encoder Representations)

Breakthrough Success

- Attention produces much better results with record setting accuracy
- Almost all <u>state-of-the-art models</u> use attention
- Model designs like <u>Transformers</u> utilize attention for accuracy and provide higher speed by being entirely feed-forward

from Transformers)

- Consider both the meaning of words (in context) and their significance
- Rather than reading left to right, the model considers all surrounding words to embed context (bidirectional)
- A small change to existing models to greatly improve accuracy for many tasks
- Important especially for QA systems to locate relevant answers

cutt Original word Token E_{my} E_{dog} E Ecute E_[SEP] embeddings Embeddings Context from Segment EA EA EA EA EA nearby words Embeddings and sentences Position E_4 E₅ Position and Embeddings order of information

Transfer Learning

Repurposing a Model

Input

- Training an NLP model for every dataset is computationally expensive
- Transfer learning uses models already trained on large datasets to significantly reduce computation
- We can start by training our QA system based on pretrained word vectors

