Grain Harvesting Optimization

Objective
Use combine-collected data to analyze crop fields and develop an algorithm to optimally harvest any given field.

Motivating Questions
- What variables are integral in optimizing a path?
- How do we consider a path to be optimal?
- Are crops traditionally harvested in a specific manner we can add to our algorithm?

Early Methodology
- Combines collect the following data:
 - Time stamps of every operation
 - Latitude/longitude coordinates
 - Elevation measured in feet
 - Owner/Operation ID to distinguish between fields

Field Size Estimation
- Calculating the area of a field is important to determine optimization space
- Conversions from latitude/longitude to pixels to kilometers

Further Methodology & Deliverables
Tableau Dashboard
- Interactive application for farmers to better understand the shape, size, and topography of their field(s)
 - Each field contains a vector orientations of headings, an elevation gradient, and color-coded operations

Google OR-Tools Path Algorithm
- Black and white field representation as input (white = harvesting area)
 - OpenCV library used to contour field and insert grid layout
 - Google OR-Tools functions optimize on shortest distance and elevation climbed

Conclusions
Next Steps and Future Goals
- Test Different Algorithmic Approaches
 - Bin-Packing: Harvest must be packed into a finite number of bins, minimizing the number of bins
 - Linear Programming: Use linear objective function to decompose problem into 2 dimensions and find an optimal outcome
 - Add customizations to Path Algorithm allowing farmers to customize route
- Consolidate Tableau and OR-Tools into single application for ease of use

Acknowledgements
Special thanks to John Andruch, Kylie O’Connor, Devin Becktell, Dave Leiphon, David Glass, and Dr. Nathan Delay, and John Deere! We couldn’t have gotten here without you! Another thank you to Dr. Mark Daniel Ward and Maggie Betz for making Corporate Partners possible!