Problem Scoping

Scope
The plot on the left demonstrates the trend of US Corn Yield over the last century, noting a drastic increase in yield since pivotal advancements in hybrid breeding in the 1930s. Corn accounts for 95% of total feed grain production and use in the US and it is estimated that global corn production will need to double to meet the demand of 2050.

2. Hyperparameter tuning - RMSE score based on the number of estimators (decision trees). The optimal number is around 100 based on speed and performance.
3. Feature importance - Ranked the relative feature importance and graphed the 5 most important ones. The most important feature is rainfall.
4. Training for multiple years - Trained a random forest regressor for different years and plotted performance for each year. Future work would consist of creating an ensemble of each regressor.

Data Methodology

Genotypic data of Maize varieties were paired with several sources of abiotic stress. These abiotic stressors consisted of weather, air quality, and soil information.
- Incomplete genomic data
- Baigle imputation for many of the missing values
- ERAS hourly weather estimates used to replace historical NOAA data
- Resolution up to 0.1° x 0.1° grid
- Downloaded from EPA database
- Provided by the prior student Bayer team
- Downloaded from EPA database
- Also provided by the prior student Bayer team

2022 Predicted Yield Distribution (Bushels)
- One strain randomly selected for comparison
- Predicted yield using data
- Size denotes size of yield
- Overlapping circles denote multiple plantings at the location
- 7 colors for 7 quantiles; brighter color means higher yield
- Overall mean is 174.5

Genotype data of a specific strain planted in a specified year will be explored which would allow the prediction of future yield. More complete genotype imputation should be explored which would allow the prediction of a specific strain planted in a specified year and location.

Causal Inference

2. Hypothesis
After accounting for the effect of precipitation, low temperature in the summer will reduce yield.

Methodology
- Defined the treatment of low temperature in the summer as having an average temperature for June, July, and August that was lower than the median
- Split the dataset into control and treatment group
- Implemented a dummy binary categorical variable to assign a treatment value for each observation
- Verified normal distribution of target variable (yield)
- Predicted yield based off precipitation and average temperature for June, July, and August

Results & Interpretation
After controlling for the effects of precipitation in the summer, a crop in a location with lower average temperature in the summer will yield 0.0741 bushels/acre less than average than a crop in a location with ideal average temperature in the summer.

Causal Inference using Dowhy Library
Machine learning that will model causal assumption and validate through 4 steps:
- Model: Dowhy creates causal graphical model from dataset
- Identify: Identify desired causal effect criteria based on graphical model
- Estimate: Estimate causal effect based on identified criteria
- Refute: Refute the obtained estimate through various refutation method

GUI & Future Work

2030
2040
2050
2060
2070
2080

2090

Performance is expected to decrease in the northwestern states over time for this strain

The Effect of Climate Change on the Yield of Maize


Acknowledgments

- We would like to thank the Purdue Data Mine and Bayer Crop Science for the opportunity to explore and learn throughout this year.
- Thank you to Alfi Hasan, Richard Sun, and Nima Hamidi for their help & guidance throughout this project.

The Data Mine Corporate Partners Symposium 2022