

Ife Adgegbohungbe, Jenna Aguilar, Aziz Ebrahimi, Diana M. Escamilla Sanchez, Harrison Helmick, Dongqi Liu, Bilsha M. Mohan Das, Kobe Martin, Dhruv Narayanan, Amrish Nayak, Sven K. Nelson, George Ogilvie-Russell, Meenakshi Pavithran, Daniyaal Rasheed, Paula Sarmiento, Abhay Silina, Priyadarshini Subramaniam, Seth Tolley, Keishi Vannithamby

Introduction

Data Wrangling

- Merging datasets
- Cleaning data Eliminated 317
- of out-ofrange values
- Outlier detection

Assembling Environmental Datasets

- Weather stations close to field locations shown on map to the right
- In total, pulled data from 405 weather stations

- NOAA (<u>https://www.noaa.gov</u>) months)
- SoilGrids (<u>https://soilgrids.org</u>)
- and other soil metrics (16 metrics)

over daily averages (5 metrics) **Pipelines for Genomic Imputation**

Marker density by chromosome

Beagle Imputation

Converted genotype files from txt to ped/map format

Ped/Map files used in plink to create vcf files

Imputation using Beagle 5.1

All work was conducted on R4.0.0 and Python 3.6.11

either male or female, data provided included:

And covariates as Location and Year.

markers.

Dataset was divided in two clusters with inbred lines bred as

• Genetic information (Parents and progeny) of important

Phenotype data, including yield, height, weight maturity etc.

Using Genotype by Environment Interactions for Marker Selection in Maize

Methodology

Phenotypic metrics and ranges		
ait	Units	range
r Height (EHT)	inches	5-99
timated Relative Maturity (ERM)	days	60-180
isture (MST)	%	5-50
ant Height (PHT)	inches	5-200
ot Lodging Percentage (RTLP)	%	0-100
alk Lodging Percentage (STLP)	%	0-100
st Weight (TWT)	pounds/bushel	40-70
eld Best Estimate (YLD_BE)	bushels/acre	1-400
		-

• Precipitation, Temperature, Wind (16 metrics in 6

• Soil texture, nitrogen, organic carbon metrics, soil pH, EPA Air Quality (<u>https://www.epa.gov/outdoor-air-quality-data</u>)

• Air Quality Index (AQI) annual mean and maximums

- Consensus linkage map used for imputation provided by Monsanto (shown to left)

Conditional probabilities of marker genotypes

Phenotype x Environment

- Analysis of correlations between environmental metrics and phenotypic outputs (such as yield)
- To identify environmental factors impacting traits
- Such as nitrogen, AQI, and soil organic carbon
- For comparisons with a high absolute correlation (see correlation plot), scatter plots were visually inspected to examine whether the correlation was linear and likely to be a real relationship.

Year-to-year variance

- Heatmap at right shows variance for each phenotype by year.
- MST and EHT are variable across years
- Increasing trend in YLD is consistent with genetic improvements each year.

Next steps

- Build prediction models for yield using Linear Regression and Random Forest
- Work towards developing more sophisticated Models such as Deep Neural Networks that could make more accurate predictions.
- Explore different sets of variables (genotype, environment) and alternate feature selection.
- Test how different imputation methods have effects on the model.
- Heritability Measures
- Analysis and Marker Identification
- Feature Selection and Prediction

The Data Mine Corporate Partners Symposium 2021

Results and Conclusions