

The Data Mine

Maheep Brar, Allen Chang, Sarah Firestone, Camille Goenawan, Zhixian Han, Christian Leidholm, Sean Lee, Hector Lozano Perez, Yazan Meqbil, Pratim Moulik, Imrul Shahriar, Rosalie Wilfong, Andres Urbina, Rohit Varansay, Keishi Vannithamby, Kyle Zheng

ATOM INTRODUCTION

- **<u>ATOM</u>:** Accelerating Therapeutics for Opportunities in Medic
- Open public-private partnership for accelerating drug design using computation-driven drug design
- Use of computational modeling to speed up long drug disco process
- Create machine learning models using AMPL software and tutorials that can learn from how different compounds inter with targets (opioid receptors, hERG, and histamine receptor
- <u>Goals</u>:
- Accelerate drug discovery process
- Improve success rate in translation to patients
- Transforming drug discovery from slow, high-failure proces into rapid, patient-centric model

ANALYSIS AND RESULTS

- Split into 3 teams:
- Team 1: Opioid Receptors

<u>GCNN multi-task vs GCNN single-task:</u>

Multi-task model has slightly higher testing (R² score) than the single task model **<u>GCNN multi-task vs Random Forest single task:</u>**

Multi-task model still has slightly lower testing R² than the single task model • Team 2: hERG

<u>GCNN multi-task vs GCNN and Random Forest single-task:</u> Multi-task model has better testing R² scores for certain assays compared to the single-task model *However, it has lower scores in other assays.

• **Team 3**: Histamine Inhibitors

<u>GCNN multi-task vs GCNN and Random Forest single-task:</u>

Trained on the highly correlated CHRM targets: Multi-task model has better testing R² scores than our single task models for all five targets. Trained on the HRH1, HTR2A, and DRD2 targets:

Multi-task GCNN model only performed better for HRH1.

Using Machine Learning Models to Accelerate Drug Discovery Process

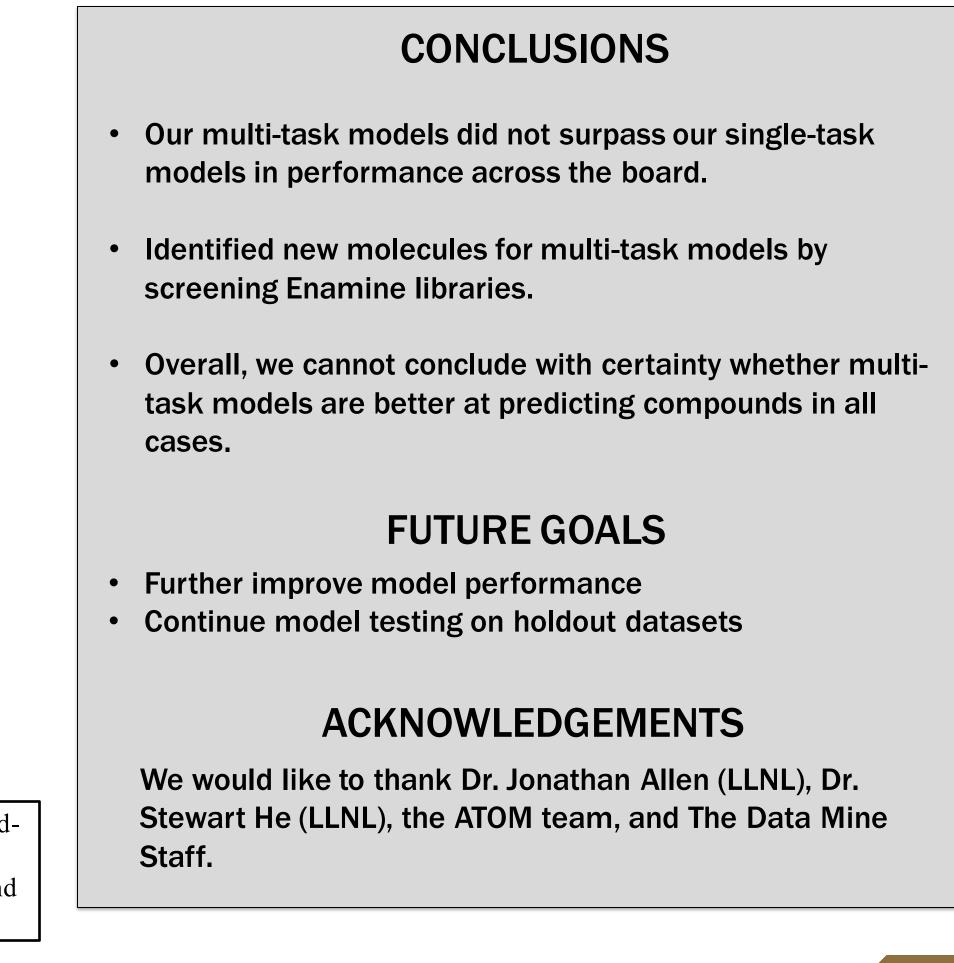
cine gn overy l eract cors)	 QUESTIONS Can we create multi-task models that learn across several protein targets? Are multi-task models better at predicting compounds than single-task models are? Can we find new makeable compounds that meet our design criteria? Hypothesis Multi-task models are better at ranking compounds than single-task models. 	 Fall 2021: Single-Ta Split type Scaffold split Model Selection Random forest Graph convolutinetwork (GCNN) Hyperparameter of Random search Grid search Bayesian search
ess	 MACHINE LEARNING VOCAB Single-task: train to do one task Multi-task: learn by training on multiple tasks, using similarities and differences to generalize better 	 Utilized these techyperparameter highest validation
	similarities and differences to generalize better	

Top 5 Compounds Identified by the Blood-Brain-Barrier Team Multi-task Model Calculated by the Cost-Score Function and

Screening 924,890 SMILEs Strings.

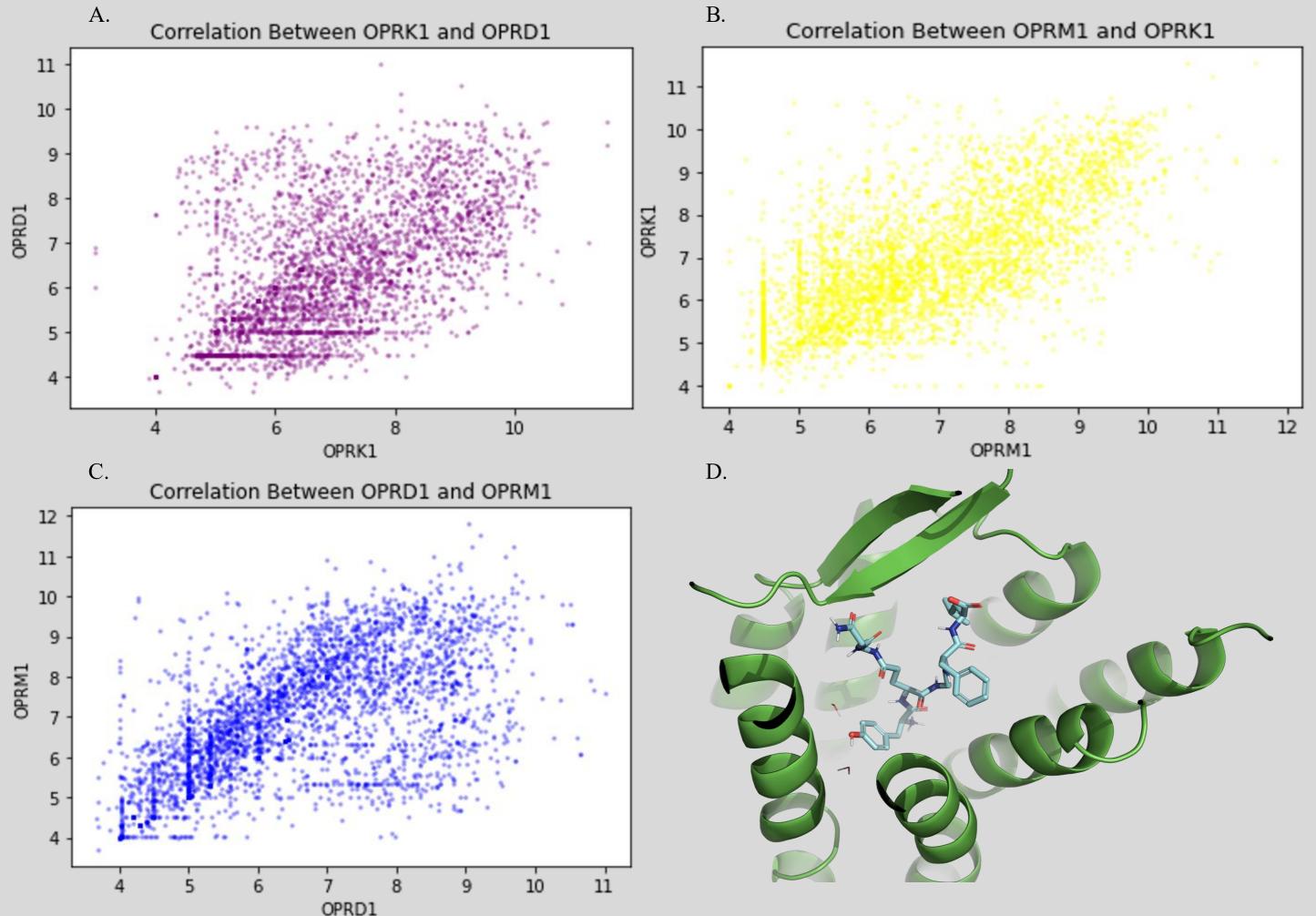
The Data Mine Corporate Partners Symposium 2022

RESEARCH METHODOLOGY			
<u>le-Task Models</u>	Spring 2022: Multi-Task Models Split type 		
lit	 Multi-task split (scaffold) 		
tion	Model selection		
rest	 Graph convolutional neural 		
olutional neural	network (GCNN)		
CNN)	Utilized SLURM		
eter optimization	Train models for increased		
arch	efficiency		
	Hyperparameter optimization		
earch	 Added multiple layers (layer sizes) 		
se techniques to find	 Learning rate, early stop 		
neters that yielded the	 Compared single-task and multi- 		
dation score	task models		



Team 1

	Single Task Random Forest	Single Task GCNN		Multitask GCNN	
Opioid Receptor	Validation	Validation	Testing	Validation	Testing
OPRD1	0.76	0.71	0.56	0.73	0.60
OPRK1	0.66	0.59	0.60	0.58	0.61
OPRM1	0.73	0.69	0.66	0.71	0.65



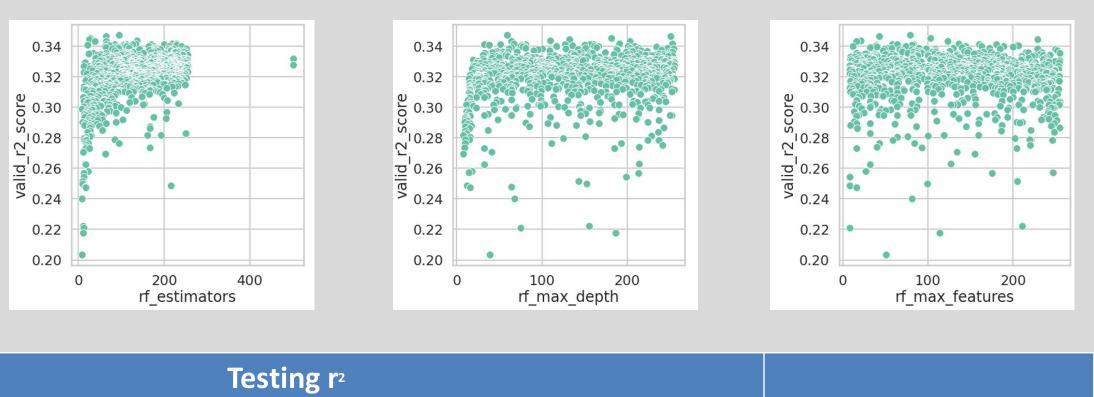
Correlational plots between pIC50 values for the three opioid receptor targets. A. OPRK1 vs. OPRD1 B. OPRM1 vs. OPRK1 C. OPRD1 vs. OPRM1 D. Docking pose for the highest scoring compound docked into the delta opioid receptor (OPRD1).

Using Machine Learning Models to Accelerate Drug Discovery Process

Maheep Brar, Allen Chang, Sarah Firestone, Camille Goenawan, Zhixian Han, Christian Leidholm, Sean Lee, Hector Lozano Perez, Yazan Meqbil, Pratim Moulik, Imrul Shahriar, Rosalie Wilfong, Andres Urbina, Rohit Varansay, Keishi Vannithamby, Kyle Zheng

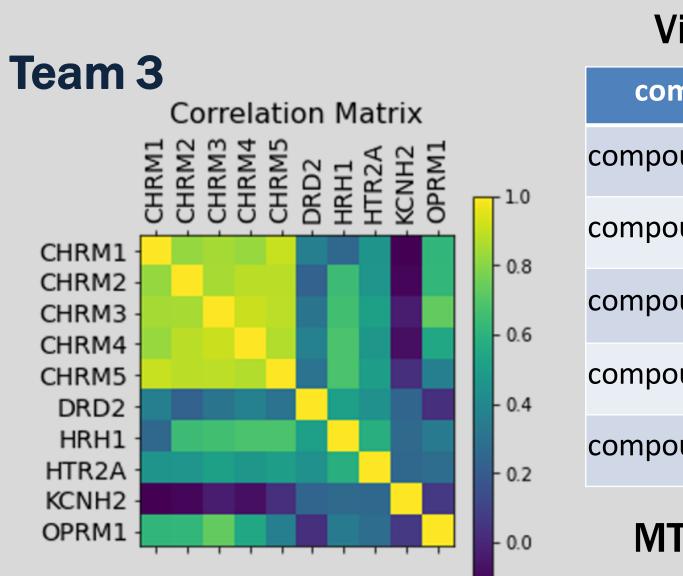
Team 2

DBA = Displacement binding PCA = Patch clamp TFA = Thallium flux



HERG Overall Results

Tasks				
	RF Single-Task	GCNN Single-Task (5 layers)	GCNN Multi-Task (5 layers)	Multi-Task Delta
DBA	0.47	0.42	0.42	-0.05
PCA	0.25	0.33	0.38	+0.05
TFA	-0.04	-0.17	0.44	+0.48
Other	0.36	0.41	0.32	-0.05



MT-ML model performs better for HRH1			Target	Single Task Model (test_r ² _score)	Multitask Model (test_r ² _score)
Target	Single Task Model	Multitask Model	CHRM1	0.185	0.394
	(test_r ² _score)	(test_r ² _score)	CHRM2	0.308	0.389
HRH1	0.410	0.493	CHRM3	0.354	0.518
HTR2A	0.462	0.378	CHRM4	0.198	0.305
DRD2	0.405	0.370	CHRM5	0.345	0.392

The Data Mine Corporate Partners Symposium 2022

Single Task Random Forest Parameters

Virtual Screening with MT machine learning model

	_		_	
mpound_id	H1 (>9)	M2 (<5)	hERG (<5)	cost
ound_026981	9.3	4.8	4.9	-1.81
ound_005764	9.2	4.1	4.3	-1.46
ound_251713	9.2	5.5	4.9	-1.29
ound_067674	9.2	4.5	4.2	-1.28
ound_067675	9.2	4.5	4.2	-1.28

MT-ML model performs better for all the CHRM receptors