

Introduction

COMPANY BACKGROUND

Thermo Fisher Scientific Inc., a Fortune 100 Bio-Tech company, is the world leader in serving science, with annual revenue over \$40 billion. Their mission is to enable their customers to make the world healthier, cleaner and safer.

PROJECT SUMMARY

- Our goal is to create an easy-to-use application that can analyze their inventories' historical data of through an LSTM and forecast the necessary inventory capacity for their distribution centers.
- The model is isolated to a single warehouse, but the goal is to make it applicable by all their warehouses.

PROJECT BENEFIT

- This project will help Thermo Fisher ensure that their distribution centers are operating at maximum efficiency, which will help researchers continue research without the fear of running out of equipment.
- It can also benefit them economically because it would avoid unused storage capacity or an overflow of inventory, which will help cut financial losses.

Pre-processing the Data

- analyze the trend of inventory buildup
- more accurate analysis and forecasting

The Model:

- Investigate seasonal patterns within the historical inventory data. Forecast future inventory levels with a week-by-week precision. **Utilizes MAPE for measuring forecast accuracy**

Visualization and Forecasting

- The graphs display inventory projections for freezer storage SKUs in the years 2023 and 2024.
- The forecasts are represented by an orange line, which contrasts with the actual inventory data.

ThermoFisher

Aditya Mallepalli, Nirmal Senthilkumar, Karina Kejriwal, Gunyoung Park, Bobby Hogan, Joudi Alghamdi, Tharunkumar Chandirasekaran

Implements a SARIMAX time series analysis model

Future Work

- Make the entire script into an A can be implemented in any pro
- Connect the work with a live data to eliminate manual input
- Take large unexpected outliers account.

The Data Mine Corporate Partners Symposium 2024

MACHINE LEARNING MODEL

Pre-processing the Data

- Excluded data with missing values.
- Converted the product quantity into measured volumes.
- Grouped & aggregated items by Storage Condition and time.
- Scaled data by minimum and maximum values of each group.

The Model:

- Implemented a VAR (Vector Auto-Regression) model
- Allows us to use multivariate output as input to make multiple predictions into the future
- Utlizied Augmented Dickey–Fuller test, Granger Tests, and tested for multiple lag values prior to fitting the model

Conclusion

- We were able to create a distribution model for the California capacity center - We hope to later expand to other Thermo Fisher capacity center locations as well

API, so it ojects. atabase, into	 Acknowledgements Sharavanan Sivakumar Michael King, Andrew Cooke, Sean McCrary Karina Kejriwal, Gunyoung Park, Nirmal Senthilkumar, Sohil Doshi, Aditya Mallepalli, Joudi Alghamdi, Tharunkumar Chandirasekaran, Bobby Hogan
	Bobby Hogan • Josh Winchester