Introduction
This project aims to develop a forecasting model for COVID-19 cases across the USA to assist in AbbVie's understanding of the disease in its endemic state because of the large disruption to patients across the nation due to the pandemic.

Objectives
- Estimate total and peak cases for future COVID-19 seasons as reflected in AbbVie data.
- Establish a clear understanding of case seasonality.

Central Questions
- What variables may contribute to the spread of COVID-19?
- How may we best model the seasonality and covariances of COVID-19 spread?

Data Exploration

<table>
<thead>
<tr>
<th>Patient ID</th>
<th>Diagnosis Code</th>
<th>Diagnosis Description</th>
<th>Income Code</th>
<th>Date</th>
<th>Start</th>
<th>Ethnicity</th>
<th>Gender</th>
<th>Birth Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given Data:</td>
<td>126 million cases of COVID</td>
<td>What we did:</td>
<td>Data cleaning (Removed all the undefined rows and unnecessary columns)</td>
<td>Data Exploration (Graphed the data and identified patterns)</td>
<td>Data Visualization (Made the visuals with the Data)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Peaks in the data:
 - September
 - End of December and Beginning of January
 - End of August is when school starts
 - End of December is when people travel for Christmas
 - Both lead to people coming in close contact with each other

Exploratory Data Analysis

Multiple diagnosis & Time Gap between diagnoses
- Very few people have more than two diagnoses
- Time gap between diagnoses has decreasing trend

Fold change analysis
- Considered the number of cases in the first week as the baseline
- There was no significant difference between males and females compared each month
- The highest peak in COVID-19 cases (January 2022) was 6,000 times greater than in January 2020.

Data Sampling
Data was sampled in a way which would minimize bias. Non-covid data was included in the dataset to ensure minimal bias after sampling.

Alternate Approaches
- Long short-term memory
 - Generalized linear mixed models
- Required too much memory
- More time for Bayesian methods

Conclusion
Utilizing a massive dataset of nearly 120 million rows, we modeled COVID cases, identifying peak months and recurring patterns in patient diagnoses. Through meticulous data sampling and time-series analysis using SARIMA modeling, we forecasted COVID cases across the USA, emphasizing the critical role of data-driven insights in understanding and predicting pandemic trends.

Future Work
- Collect more data features related to symptoms to develop a classification model for predicting covid diagnosis
- Perform geo-analysis of covid spread across US states

Acknowledgements
Corporate/Partner Mentors
- Tom Fenwick
- Ash Kharar
- Chandni ‘Maggie’ Garg

Time series Analysis
Seasonal Auto-regressive Integrated Moving-Average (SARIMA)
Step 1: Check stationary of data and Converting Non-stationary data into Stationary
 - Use ADF/KPSS tests check stationary
 - First order difference + 312 steps seasonality difference

Step 2: Select model by Auto-Correlation Function and Partial Auto-Correlation Function
Step 3: Fit SARIMA model and predict the future
 - Our SARIMA Model captures the overall trend when forecasting the next three months

Data was plotted and graphed. The data was plotted in a way which would minimize bias. Non-covid data was included in the dataset to ensure minimal bias after sampling by using data cleaning (removed all the undefined rows and unnecessary columns), data exploration (graphed the data and identified patterns), and data visualization (made the visuals with the data).

The Data Mine Corporate Partners Symposium 2024